PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seasonal changes in particulate organic matter (POM) concentrations and properties measured from deep areas of the Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In seawater particulate organic matter (POM) serves as a food source for heterotrophic bacteria and zooplankton and is a source of dissolved organic compounds and nutrients. POM plays a critical role in transporting carbon to marine sediments where a fraction of it is buried in subsurface sediments and thus avoids conversion to carbon dioxide on shorter time scales. Distribution and properties of POM were investigated in the Baltic Proper from 2013 to 2015. Particulate organic carbon (POC) was used to investigate POM sources and dynamics. Stable carbon isotopes (δ13C), elemental composition (C, N), chlorophyll a and POM contribution to suspended particulate matter (SPM) were also measured and interpreted. The water column exhibited concentrations ranging from 0.2 mg POC/l (deep water layer — DWL, cold season — CS) to 1.7 mg POC/l (surface water layer — SWL, warm season — WS). POM represented 0.15 to 0.45 of SPM during respective cold and warm seasons. Stable carbon isotopes (δ13CPOC) ranged from -22.5‰ (WS) to -28.0‰ (CS), while the POC/Chl a ratio ranged from 180 g/g (SWL-WS) to 300 g/g (DWL-CS). Seasonal changes were attributed to high primary production in the SWL during the WS, which represented a major POM source. Continuous mineralization/sedimentation through-out the water column constituted a major POM sink.
Czasopismo
Rocznik
Strony
505--521
Opis fizyczny
Bibliogr. 95 poz., mapa, tab., wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • [1] Abril, G., Nogueira, M., Etcheber, H., Cabeçadas, G., Lemaire, E., Brogueira, M. J., 2002. Behaviour of organic carbon in nine contrasting European estuaries. Estuar. Coast. Shelf Sci. 54, 241-262, http://dx.doi.org/10.1006/ecss.2001.0844.
  • [2] Almroth-Rosell, E., Kari, E., Hordoir, R., Meier, M., Hall, P., 2011. Transport of fresh and resuspended particulate organic material in the Baltic Sea — a model study. J. Mar. Syst. 87, 1-12, http://dx.doi.org/10.1016/j.jmarsys.2011.02.005.
  • [3] Andersson, A., Rudehall, A., 1993. Proportion of plankton biomass in particulate organic carbon in the northern Baltic Sea. Mar. Ecol. Prog. Ser. 95, 133-139.
  • [4] Andersson, A., Tomminen, T., Lehtinen, S., Jurgensk, K., Labrenz, M., Vitasalo, M., 2017. The pelagic food web. In: Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T. (Eds.), Biological Oceanography of the Baltic Sea. Springer, Dordrecht, 281-332.
  • [5] Bianchi, T. S., Rolff, C., Lambert, C. D., 1997. Sources and composition of particulate organic carbon in the Baltic Sea: the use of plant pigments and lignin-phenols as biomarkers. Mar. Ecol. Prog. Ser. 156, 25-31, http://dx.doi.org/10.3354/meps156025.
  • [6] Björck, S., 1995. A review of the history of the Baltic Sea. Quatern. Int. 27, 19-40, http://dx.doi.org/10.1016/1040-6182(94)00057-C.
  • [7] Burska, D., Pryputniewicz, D., Falkowska, L., 2005. Stratification of particulate organic carbon and nitrogen in the Gdańsk Deep (southern Baltic Sea). Oceanologia 47 (2), 201-217.
  • [8] Chen, W., Wagnersky, P.J., 1993. High-temperature combustion analysis of dissolved organic carbon produced in phytoplankton cultures. Mar. Chem. 41, 167-171, http://dx.doi.org/10.1016/0304-4203(93)90115-5.
  • [9] Chester, R., 2003. Marine Geochemistry, 2nd edn., Blackwell Sci., London, 506 pp.
  • [10] Coban-Yıldız, Y., Altabet, M. A., Yılmaz, A., Tugrul, S., 2006. Carbon and nitrogen isotopic ratios of suspended particulate organic matter (SPOM) in the Black Sea water column. Deep-Sea Res. Pt. II 53, 1875-1892, http://dx.doi.org/10.1016/j.dsr2.2006.03.021.
  • [11] Collos, Y., Husseini-Ratrema, J., Bec, B., Vaquer, A., Hoai, T. L., Rougier, C., Pons, V., Souchu, P., 2005. Pheopigment dynamics, zooplankton grazing rates and the autumnal ammonium peak in a Mediterranean lagoon. Hydrobiologia 550 (1), 83-93, http://dx.doi.org/10.1007/s10750-005-4365-1.
  • [12] Conover, R. J., Durvasula, R., Roy, S., Wang, R., 1988. Probable loss of chlorophyll-derived pigments during passage through the gut of zooplankton, and some of the consequences. Limnol. Oceanogr. 31, 878-887, http://dx.doi.org/10.4319/lo.1986.31.4.0878.
  • [13] De La Rocha, C. L., 2006. The biological pump. Treatise on Geochemistry, vol. 6. Pergamon Press, 83-111.
  • [14] Dera, J., Woźniak, B., 2010. Solar radiation in the Baltic. Oceanologia 50 (4), 533-582, http://dx.doi.org/10.5697/oc.52-4.533.
  • [15] Dzierzbicka-Głowacka, L., Kulinski, K., Maciejewska, A., Jakacki, J., Pempkowiak, J., 2011. Numerical modelling of POC dynamics in the southern Baltic under possible future conditions determined by nutrients, light and temperature. Oceanologia 53 (4), 1-22, http://dx.doi.org/10.5697/oc.53-4.971.
  • [16] Dzierzbicka-Głowacka, L., Kulinski, K., Maciejewska, A., Pempkowiak, J., 2010. Particulate organic carbon in the southern Baltic Sea. Numerical simulation and experimental data. Oceanologia 52 (4), 621-648, http://dx.doi.org/10.5697/oc.52-4.621.
  • [17] Emeis, K., Christiansen, C., Edelvang, K., Jähmlich, S., Kozuch, J., Laima, M., Leipe, T., Löffler, A., Lund-Hansen, L. C., Miltner, A., Pazdro, K., Pempkowiak, J., Pollehne, F., Shimmield, T., Voss, M., Witt, G., 2002. Material transport from the nearshore to the basinal environment in the southern Baltic Sea II. Synthesis of data on origin and properties of material. J. Mar. Syst. 35, 151-168, http://dx.doi.org/10.1016/S0924-7963(02)00127-6.
  • [18] Engel, A., Meyerhofer, M., von Broker, K., 2002. Chemical and biological composition of suspended particles and aggregates in the Baltic Sea in summer (1999). Estuar. Coast. Shelf Sci. 55, 729-741, http://dx.doi.org/10.1006/ecss.2001.0927.
  • [19] Ferrari, G., Bo, F., Babin, M., 2003. Geo-chemical and optical characterization of suspended matter in European coastal waters. Estuar. Coast. Shelf Sci. 57, 17-24, http://dx.doi.org/10.1016/S0272-7714(02)00314-1.
  • [20] Gębka, K., Bełdowska, M., Saniawska, D., Kuliński, K., Bełdowski, J., 2018. Watershed characteristics and climate factors effect on the temporal variability of mercury in the southern Baltic Sea rivers. J. Environ. Sci. 68, 55-64, http://dx.doi.org/10.1016/j.jes.2017.11.030.
  • [21] Goñi, M. A., Teixera, M. J., Perkey, D. W., 2003. Sources and distribution of organic matter in a river dominated estuary (Winyah Bay, SC, USA). Estuar. Coast. Shelf Sci. 57, 1023-1048, http://dx.doi.org/10.1016/S0272-7714(03)00008-8.
  • [22] Grossart, H.-P., Ploug, P., 2001. Microbial degradation of organic carbon and nitrogen on diatom aggregates. Limnol. Oceanogr. 46, 267-277, http://dx.doi.org/10.4319/lo.2001.46.2.0267.
  • [23] Gustafsson, O., Gelting, J., Andersson, P., Larsson, U., Roos, P., 2013. An assessment of upper ocean carbon and nitrogen export fluxes on the boreal continental shelf: A 3-year study in the open Baltic Sea comparing sediment traps, 234Th proxy, nutrient, and oxygen budgets. Limnol. Oceanogr.-Meth. 11 (9), 495-510, http://dx.doi.org/10.4319/lom.2013.11.495.
  • [24] Gustafsson, E., Morth, C.-M., Humborg, Ch., Gustafsson, B. G., 2015. Modelling the 13C and 12C isotopes of inorganic and organic carbon in the Baltic Sea. J. Mar. Syst. 148, 122-130, http://dx.doi.org/10.1016/j.jmarsys.2015.02.008.
  • [25] Hagström, Å., Azam, F., Kuparinen, J., Zweifel, U.-L., 2001. Pelagic plankton growth and resource limitations in the Baltic Sea. In: Wulff, F. V., Rahm, L. A., Larsson, P. (Eds.), A systems analysis of the Baltic Sea. Springer-Verlag, Berlin, 177-210.
  • [26] Hakanson, L., Eckhell, J., 2005. Suspended particulate matter (SPM) in the Baltic Sea –— new empirical data and models. Ecol. Model. 189, 130-150, http://dx.doi.org/10.1016/j.ecolmodel.2005.03.015.
  • [27] Hayes, J. M., 1993. Factors controlling the δ13C contents of sedimentary organic compounds: principles and evidence. Mar. Geol. 113, 111-125, http://dx.doi.org/10.1016/0025-3227(93)90153-M.
  • [28] Heiskanen, A.-S., Haapala, J., Gundersen, K., 1998. Sedimentation and sources of settling C, N and P in the coastal Northern Baltic Sea. Estuar. Coast. Shelf Sci. 46, 703-712, http://dx.doi.org/10.1006/ecss.1997.0320.
  • [29] HELCOM, 2007. Climate change in the Baltic Sea area. In: Baltic Sea Environ. Proc. 111, 54 pp.
  • [30] Hygum, B. H., Petersen, J. W., Søndergaard, M., 1997. Dissolved organic carbon released by zooplankton grazing activity — a high quality substrate pool for bacteria. J. Plankton Res. 19, 97-111, http://dx.doi.org/10.1093/plankt/19.1.97.
  • [31] Kivi, K., Kaitala, S., Kuosa, H., Kuparinen, J., Leskinen, E., Lignell, R., Marcussen, B., Tamminen, T., 1993. Nutrient limitation and grazing control of the Baltic plankton during annual succession. Limnol. Oceanogr. 38, 893-905, http://dx.doi.org/10.4319/lo.1993.38.5.0893.
  • [32] Kopczyńska, E., Goeyenes, L., Semeneh, M., Dehairs, F., 1995. Phytoplankton composition and cell carbon distribution in Prydz Bay, Antarctica: relation to organic particulate matter and its δ13C values. J. Plankton Res. 17, 685-707, http://dx.doi.org/10.1093/plankt/17.4.685.
  • [33] Koziorowska, K., Kuliński, K., Pempkowiak, J., 2016. Sedimentary organic matter in two Spitsbergen fjords: terrestrial and marine contribution based on carbon and nitrogen contents and stable isotopes composition. Cont. Shelf Res. 113, 38-46, http://dx.doi.org/10.1016/j.csr.2015.11.010.
  • [34] Koziorowska, K., Kuliński, K., Pempkowiak, J., 2017. Distribution and origin of inorganic and organic carbon in the sediments of Kongsfjorden, Northwest Spitsbergen, European Arctic. Cont. Shelf Res. 150, 27-35, http://dx.doi.org/10.1016/j.csr.2017.08.023.
  • [35] Koziorowska, K., Kuliński, K., Pempkowiak, J., 2018. Comparison of the burial rate estimation methods of organic and inorganic carbon and quantification of carbon burial in two high Arctic fjords. Oceanologia 60 (3), 405-418, http://dx.doi.org/10.1016/j.oceano.2018.02.005.
  • [36] Kravchishina, M. D., Klyuvitkin, A. A., Pautova, L. A., Politova, N. V., Lein, A.Yu, 2018. Stable isotopic composition of particulate organic carbon in the Caspian Sea. Oceanology 58 (1), 45-56, http://dx.doi.org/10.1134/S0001437018010083.
  • [37] Kuliński, K., Pempkowiak, J., 2008. Dissolved organic carbon in the southern Baltic Sea: quantification of factors affecting its distribution. Estuar. Coast. Shelf Sci. 78, 38-44, http://dx.doi.org/10.1016/j.ecss.2007.11.017.
  • [38] Kuliński, K., Pempkowiak, J., 2011. The carbon budget of the Baltic Sea. Biogeosciences 8, 3219-3230, http://dx.doi.org/10.5194/bg-8-3219-2011.
  • [39] Kuliński, K., She, J., Pempkowiak, J., 2011. Short and medium term dynamics of the carbon exchange between the Baltic Sea and the North Sea. Cont. Shelf Res. 31, 1611-1619, http://dx.doi.org/10.1016/j.csr.2011.07.001.
  • [40] Laws, E. A., Popp, B. N., Bidigare, R. P., Kennicutt, M. C., Macko, S. A., 1995. Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: theoretical considerations and experimental results. Geochim. Cosmochim. Acta 59, 1131-1138, http://dx.doi.org/10.1016/0016-7037(95)00030-4.
  • [41] Leipe, T., Tauber, F., Vallius, H., Virtasalo, J., Uścinowicz, Sz., Kowalski, N., Hille, S., Lindgren, S., Myllyvirta, T., 2011. Particulate organic carbon (POC) in surface sediments of the Baltic Sea. Geo-Mar. Lett. 31 (3), 175-188, http://dx.doi.org/10.1007/s00367-010-0223-x.
  • [42] Leppakowski, E., Mihnea, P. E., 1996. Enclosed seas under man induced change: a comparison between the Baltic and Black Seas. Ambio 25, 380-389.
  • [43] Lesutienė, J., Bukaveckas, P. A., Gasiūnaitė, Z. R., Pilkaitytė, R., Razinkovas-Baziukas, A., 2018. Assessing nature and dynamics of POM in transitional environment (the Curonian Lagoon, SE Baltic Sea) using a stable isotope approach. Ecol. Indic. 82, 217-226, http://dx.doi.org/10.1016/j.ecolind.2017.06.035.
  • [44] Liu, Q., Solvaray, K., Lin, B., Wang, H., Chen, Ch-T. A., 2018. Biogeochemical characteristics of suspended particulate matter in deep chlorophyll maximum layers in the south East China Sea. Biogeosciences 15, 2091-2109, http://dx.doi.org/10.5194/bg-15-2091-2018.
  • [45] Łomniewski, K., Mańkowski, W., Zaleski, J., 1975. Morze Bałtyckie. PWN, Warsaw, 508 pp.
  • [46] Lorenzen, C. J., 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol. Oceanogr. 12 (2), 343-346, http://dx.doi.org/10.4319/lo.1967.12.2.0343.
  • [47] Lowe, A. T., Galloway, A., Yeung, J., Dethier, M. N., Duggins, D. O., 2014. Broad sampling and diverse biomarkers allow characterization of nearshore particulate organic matter. Oikos 123 (11), 1341-1348, http://dx.doi.org/10.1111/oik.01392.
  • [48] Lowe, A. T., Roberts, E. A., Galloway, A., 2016. Improved marine-derived POM availability and increased pH related to freshwater influence in an inland sea. Limnol. Oceanogr. 61 (6), 2122-2138, http://dx.doi.org/10.1002/lno.10357.
  • [49] Lundsgaard, C., Olsen, M., Reigstad, M., Olli, K., 1999. Sources of settling material: aggregation and zooplankton mediated fluxes in the Gulf of Riga. J. Mar. Syst. 23, 197-210, http://dx.doi.org/10.1016/S0924-7963(99)00058-5.
  • [50] Maciejewska, A., Pempkowiak, J., 2014. DOC and POC in the water column of the southern Baltic. Part I. Evaluation of factors influencing sources, distribution and concentration dynamics of organic matter. Oceanologia 56 (3), 523-548, http://dx.doi.org/10.5697/oc.55-3.523.
  • [51] Maciejewska, A., Pempkowiak, J., 2015. DOC and POC in the water column of the southern Baltic. Part II. Evaluation of factors influencing organic matter concentration using multivariate methods. Oceanologia 57 (2), 168-176, http://dx.doi.org/10.1016/j.oceano.2014.11.003.
  • [52] Maksymowska, D., Richard, P., Piekarek-Jankowska, H., Riera, P., 2000. Chemical and isotopic composition of the organic matter sources in the Gulf of Gdańsk (Southern Baltic Sea). Estuar. Coast. Shelf Sci. 51, 585-598, http://dx.doi.org/10.1006/ecss.2000.0701.
  • [53] Meler, J., Ostrowska, M., Ficek, D., 2017a. Light absorption by phytoplankton in the southern Baltic and Pomeranian lakes: mathematical expressions for remote sensing application. Oceanologia 59 (3), 195-212, http://dx.doi.org/10.1016/j.oceano.2017.03.010.
  • [54] Meler, J., Ostrowska, M., Ston-Egiert, J., Zdun, A., 2017b. Seasonal and spatial variability of light absorption by suspended particles in the southern Baltic. J. Mar. Syst. 170, 68-87, http://dx.doi.org/10.1016/j.jmarsys.2016.10.011.
  • [55] Meyer-Harms, B., Reckermann, M., Voss, M., Sigmund, H.v., Bodungen, B., 1999. Food selection by calanoids in the euphotic layer of the Gotland Sea (Baltic Proper) during mass occurrence of N2-fixing cyanobacteria. Mar. Ecol. Prog. Ser. 191, 243-250.
  • [56] Miller, R., Page, H., Brzezinski, M. A., 2013. δ13C and δ15N of particulate organic matter in the Santa Barbara Channel: drivers and implications for trophic inference. Mar. Ecol. Prog. Ser. 474, 53-66, http://dx.doi.org/10.3354/meps10098.
  • [57] Mohrholz, V., Naumann, M., Nausch, G., Krüger, S., Gräwe, U., 2015. Fresh oxygen for the Baltic Sea — an exceptional saline inflow after a decade of stagnation. J. Mar. Syst. 148, 152-166, http://dx.doi.org/10.1016/j.jmarsys.2015.03.005.
  • [58] Omstedt, A., Humborg, Ch, Pempkowiak, J., Perttila, M., Rutgersson, A., Schneider, B., Smith, B., 2014. Biogeochemical control of the coupled CO2-O2 system of the Baltic Sea: a review of the results of Baltic-C. Ambio 43 (1), 49-59, http://dx.doi.org/10.1007/s13280-013-0485-4.
  • [59] Parsons, T. R., 1966. Determination of Photosynthetic Pigments in Seawater. A Survey of Methods. UNESCO, Paris, 69 pp.
  • [60] Pempkowiak, J., 1983. C18 reversed-phase trace enrichment of short-and long-chain (C2-C8-C20) fatty acids from dilute aqueous solutions and sea water. J. Chromatogr. A 258, 93-102, http://dx.doi.org/10.1016/S0021-9673(00)96401-X.
  • [61] Pempkowiak, J., Obarska-Pempkowiak, H., 2002. Long-term changes in sewage sludge stored in a reed bed. Sci. Total Environ. 297, 59-65, http://dx.doi.org/10.1016/S0048-9697(02)00023-2.
  • [62] Pempkowiak, J., Pocklington, R., 1983. Phenolic aldehydes and stable carbon isotopes as indicators of the origin of humic substances in the marine environment. In: Christman, J., Gjessing, E. (Eds.), Aquatic and Terrestrial Humic Materials. Ann Arbor Sci. Publ., Ann Arbor, 371-386.
  • [63] Rak, D., 2016. The inflow in the Baltic Proper as recorded in January-February 2015. Oceanologia 58 (3), 241-247, http://dx.doi.org/10.1016/j.oceano.2016.04.001.
  • [64] Rheinheimer, G., Gocke, K., Hoppe, H., 1989. Vertical distribution of microbiological and hydro-chemical parameters in different areas of the Baltic Sea. Mar. Ecol. Prog. Ser. 52 (1), 55-70, http://dx.doi.org/10.3354/meps052055.
  • [65] Ríos, A. F., Fraga, F., Pérez, F., Figueiras, F. G., 1998. Chemical composition of phytoplankton and particulate organic matter in the Ría de Vigo (NW Spain). Sci. Marina 62 (3), 257-271, http://dx.doi.org/10.3989/scimar.1998.62n3257.
  • [66] Sauer, S., Hong, W.-Li, Knies, J., Lepland, A., Forwick, M., Klug, M., Eichinger, F., Baranwal, S., Cremiere, A., Chand, S., Schubert, C. J., 2016. Sources and turnover of organic carbon and methane in fjord and shelf sediments off northern Norway. Geochem. Geophys. Geosyst. 17 (10), 4011-4031, http://dx.doi.org/10.1002/2016GC006296.
  • [67] Schneider, B., Buecker, S., Kaitala, S., Maunula, P., Wasmund, N., 2015. Characteristics of the spring/summer production in the Mecklenburg Bight (Baltic Sea) as revealed by long-term pCO2 data. Oceanologia 57 (4), 375-385, http://dx.doi.org/10.1016/j.oceano.2015.07.001.
  • [68] Schneider, B., Kaitala, S., Maunula, P., 2006. Identification and quantification of plankton bloom events in the Baltic Sea by continuous pCO2 and chlorophyll a measurements on a cargo ship. J. Mar. Syst. 59, 238-248, http://dx.doi.org/10.1016/j.jmarsys.2005.11.003.
  • [69] Schneider, B., Nauscg, G., Nagel, K., Wasmund, N., 2003. The surface water CO2 budget for the Baltic Proper: a new way to determine nitrogen fixation. J. Mar. Syst. 42, 53-64, http://dx.doi.org/10.1016/S0924-7963(03)00064-2.
  • [70] Schubert, C. J., Calvert, S. E., 2001. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic ocean sediments: implications for nutrient utilization and organic matter composition. Deep Sea Res. 48, 789-810, http://dx.doi.org/10.1016/S0967-0637(00)00069-8.
  • [71] Schumann, R., Rentsch, D., Görs, S., Schiewer, U., 2001. Seston particles along a eutrophication gradient in coastal waters of the Southern Baltic Sea: significance of detritus and transparent mucoid material. Mar. Ecol. Prog. Ser. 218, 17-31, http://dx.doi.org/10.3354/meps218017.
  • [72] Segar, D. A., 2012. Introduction to Ocean Science, 3rd edn., 1st digit. edn., ver. 3.0, 525 pp.
  • [73] Sheppard, Ch. (Ed.), 2019. World Seas: An Environmental Evaluation, vol. I. Elsevier, Acad. Press, London, 912 pp.
  • [74] Spence, C., Steven, D. M., 1974. Seasonal variation of the chlorophyll a: pheopigment ratio in the Gulf of St. Lawrence. J. Fish. Res. Board Can. 31 (7), 1263-1268, http://dx.doi.org/10.1139/f74-155.
  • [75] Stoń, J., Kosakowska, A., Lotocka, M., Łysiak-Pastuszak, E., 2002. Pigment composition in relation to phytoplankton community structure and nutrient content in the Baltic Sea. Oceanologia 44 (4), 419-437.
  • [76] Straat, K., Morth, C.-M., Undeman, E., 2018. Future export of particulate and dissolved organic carbon to coastal zones of the Baltic Sea. J. Mar. Syst. 177, 8-20, http://dx.doi.org/10.1016/j.jmarsys.2017.09.002.
  • [77] Struck, U., Pollehne, F., Bauerfeind, E., Bodungen, B., 2004. Sources of nitrogen for the vertical particle flux in the Gotland Sea (Baltic Proper). The results from sediment trap studies. J. Mar. Syst. 45, 91-101, http://dx.doi.org/10.1016/j.jmarsys.2003.11.012.
  • [78] Szczepańska, A., Zaborska, A., Maciejewska, A., Kuliński, K., Pempkowiak, J., 2012. Distribution and origin of organic matter in the Baltic sediments dated with 210Pb and 137Cs. Geochronometria 39 (1), 1-9, http://dx.doi.org/10.2478/s13386-011-0058-x.
  • [79] Szczepańska, T., Uścinowicz, Sz., 1994. Geochemical Atlas of the Southern Baltic; 1:500 000. Polish Geological Institute, Warsaw.
  • [80] Szymczycha, B., Maciejewska, A., Winogradow, A., Pempkowiak, J., 2014. Could submarine groundwater discharge be a significant carbon source to the southern Baltic Sea? Oceanologia 56 (2), 327-347, http://dx.doi.org/10.5697/oc.56-2.327.
  • [81] Szymczycha, B., Winogradow, A., Kuliński, K., Koziorowska, K., Pempkowiak, J., 2017. Diurnal and seasonal DOC and POC variability in the land locked sea. Oceanologia 59 (3), 379-387, http://dx.doi.org/10.1016/j.oceano.2017.03.008.
  • [82] Szymczycha, B., Zaborska, A., Bełdowski, J., Kuliński, K., Beszczyńska-Möller, A., Kędra, M., Pempkowiak, J., 2019. The Baltic Sea. World Seas: An Environmental Evaluation, vol. I. Elsevier, Acad. Press, London, 912 pp.
  • [83] Tamelander, T., Heiskanen, A.-S., 2004. Effects of spring bloom phytoplankton dynamics and hydrography on the composition of settling material in the coastal northern Baltic Sea. J. Mar. Syst. 52, 217-234, http://dx.doi.org/10.1016/j.jmarsys.2004.02.001.
  • [84] Tamm, M., Ligi, M., Panksep, K., Teeveer, K., Freiberg, R., Laas, P., Paavel, B., Kutser, T., Reinart, A., Tõnno, I., Nõges, T., 2019. Boosting the monitoring of phytoplankton in optically complex coastal waters by combining pigment-based chemotaxonomy and in situ radiometry. Ecol. Indic. 97, 329-340, http://dx.doi.org/10.1016/j.ecolind.2018.10.024.
  • [85] Thomas, H., Pempkowiak, J., Wulff, F., Nagel, K., 2003. Autotrophy, nitrogen accumulation, and nitrogen limitation in the Baltic Sea: a paradox or a buffer for eutrophication. Geophys. Res. Lett. 30 (21), 8-1-8-4, http://dx.doi.org/10.1029/2003GL017937.
  • [86] Thornton, S. F., McManus, J., 1994. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuar. Coast. Shelf Sci. 38, 219-233, http://dx.doi.org/10.1006/ecss.1994.1015.
  • [87] Wasmund, N., Naush, G., Matthäus, W., 1998. Phytoplankton spring blooms in the southern Baltic Sea — spatio-temporal development and long-term trends. J. Plankton Res. 20 (6), 1099-1117, http://dx.doi.org/10.1093/plankt/20.6.1099.
  • [88] Wasmund, N., Uhlig, S., 2003. Phytoplankton trends in the Baltic Sea. J. Mar. Sci. 60 (2), 177-186, http://dx.doi.org/10.1093/plankt/20.6.1099.
  • [89] Winogradow, A., Pempkowiak, J., 2014. Organic carbon burial rates in the Baltic Sea sediments. Estuar. Coast. Shelf Sci. 138, 27-36, http://dx.doi.org/10.1016/j.ecss.2013.12.001.
  • [90] Winogradow, A., Pempkowiak, J., 2018. Characteristics of sedimentary organic matter in coastal and depositional areas in the Baltic Sea. Estuar. Coast. Shelf Sci. 204, 66-75, http://dx.doi.org/10.1016/j.ecss.2018.02.011.
  • [91] Woźniak, S., Darecki, M., Zabłocka, M., Burska, D., Dera, J., 2016. New simple statistical formulas for estimating surface concentrations of suspended particulate matter (SPM) and particulate organic carbon (POC) from remote sensing reflectance in the southern Baltic Sea. Oceanologia 58 (3), 161-175, http://dx.doi.org/10.1016/j.oceano.2016.03.002.
  • [92] Woźniak, S., Sagan, S., Zabłocka, M., Stoń-Egiert, J., Borzycka, K., 2018. Light scattering and backscattering by particles suspended in the Baltic Sea in relation to the mass concentration of particles and the proportions of their organic and inorganic fractions. J. Mar. Syst. 182, 79-96, http://dx.doi.org/10.1016/j.jmarsys.2017.12.005.
  • [93] Voipio, A., 1981. The Baltic Sea. Elsevier Sci. Publ., Amsterdam, 148 pp.
  • [94] Voss, M., Liskow, I., Pastuszak, M., Rüb, D., Schulte, U., Dippner, J. W., 2005. Riverine discharge into a coastal bay: a stable isotope study in the Gulf of Gdansk, Baltic Sea. J. Mar. Syst. 57 (1-2), 127-145, http://dx.doi.org/10.1016/j.jmarsys.2005.04.002.
  • [95] Voss, M., Struck, U., 1997. Stable nitrogen and carbon isotopes as indicator of eutrophication of the Oder river (Baltic Sea). Mar. Chem. 59, 35-49, http://dx.doi.org/10.1016/S0304-4203(97)00073-X.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c01dc7af-35e2-4ed1-aee7-52c42c02bb0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.