PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of VO2(B) nanobelts on thermal decomposition of ammonium perchlorate

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of vanadium dioxide VO2(B) on thermal decomposition of ammonium perchlorate (AP) has not been reported before. In this contribution, the effect of VO2 (B) nanobelts on the thermal decomposition of AP was investigated by the Thermo-Gravimetric Analysis and Differential Thermal Analysis (TG/DTA). VO2 (B) nanobelts were hydrothermally prepared using peroxovanadium (V) complexes, ethanol and water as starting materials. The thermal decomposition temperatures of AP in the presence of 1 wt.%, 3 wt.% and 6 wt.% of as-obtained VO2( (B) nanobelts were reduced by 39 °C, 62 °C and 74 °C, respectively. The results indicated that VO2 (B) nanobelts had a great influence on the thermal decomposition temperature of AP. Furthermore, the influence of the corresponding V2O5, which was obtained by thermal treatment of VO2 (B) nanobelts, on the thermal decomposition of AP was also investigated. The results showed that VO2 (B) nanobelts had a greater influence on the thermal decomposition temperature of AP than that of V2O5.
Wydawca
Rocznik
Strony
560--565
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
autor
  • School of Chemistry, Dalian University of Technology, Dalian 116024, PR China
autor
  • Department of English, Dalian Neusoft University of Information, Dalian 116023, PR China
autor
  • School of Chemistry, Dalian University of Technology, Dalian 116024, PR China
Bibliografia
  • [1] ZHANG Y., LIU X., NIE J., YU L., ZHONG Y., HUANG C., J. Solid State Chem., 184 (2011), 387.
  • [2] LI L.P., SUN X.F., QIU X.Q., XU J.X., LI G.S., Inorg. Chem., 47 (2008), 8839.
  • [3] ZHOU Z., TIAN S., ZENG D., TANG G., XIE C., J. Alloy. Compd., 513 (2012), 213.
  • [4] BOLDYREV V.V., Thermochim. Acta, 443 (2006), 1.
  • [5] CHEN L.J., LI L.P., LI G.S., J. Alloy. Compd., 464 (2008), 532.
  • [6] LIU L.L., LI F.S., TAN L.H., MING L., YI Y., Propell. Explos. Pyrot., 29 (2004), 34.
  • [7] LIU H., JIAO Q., ZHAO Y., LI H., SUN C., LI X., WU H., Mater. Lett., 64 (2010), 1698.
  • [8] HAN Z.-W., HAN Y.-C., XU S., J. Therm. Anal. Calorim., 113 (2) (2013), 673.
  • [9] LU J., ZHU J., WANG Z., CAO J., ZHOU X., Ceram. Int., 40 (1B) (2014), 1489.
  • [10] LIU L., XIN J., MA F., ZHI C., LI F., Propell. Explos. Pyrot., 38 (5) (2013), 629.
  • [11] ZHANG Y., ZHANG J., NIE J., ZHONG Y., LIU X., HUANG C., Micro Nano Lett., 7 (2012), 782.
  • [12] ZHANG Y., LIU X., CHEN D., YU L., NIE J., YI S., LI H., HUANG C., J. Alloy. Compd., 509 (2011), L69.
  • [13] ZHANG Y., WANG N., HUANG Y., WU W., HUANG C., MENG C., Ceram. Int., 40 (2014) 11393.
  • [14] LIU J.F., LI Q.H., WANG T.H., YU D.P., LI Y.D., Angew. Chem. Int. Edit., 43 (2004), 5048.
  • [15] ZHANG Y., FAN M., ZHOU M., HUANG C., CHEN C., CAO Y., XIE G., LI H., LIU X., Bull. Mater. Sci., 35 (2012), 369.
  • [16] MYUNG S., LEE M., KIM G.T., HA J.S., HONG S., Adv. Mater., 17 (2005), 2361.
  • [17] ZHANG Y., FAN M., LIU X., HUANG C., LI H., Eur. J. Inorg. Chem., 2012 (2012), 1650.
  • [18] ZHANG Y., ZHANG J., ZHANG X., MO S., WU W., NIU F., ZHONG Y., LIU X., HUANG C., LIU X., J. Alloy. Compd., 570 (2013), 104.
  • [19] STRELCOV E., LILACH Y., KOLMAKOV A., Nano Lett., 9 (2009), 2322.
  • [20] ZHANG Y., HUANG Y., ZHANG J., WU W., NIU F., ZHONG Y., LIU X., LIU X., HUANG C., Mater. Res. Bull., 47 (2012), 1978.
  • [21] ZHANG Y., CHEN C., ZHANG J., HU L., WU W., ZHONG Y., CAO Y., LIU X., HUANG C., Curr. Appl. Phys., 13 (2013), 47.
  • [22] ZHANG Y., ZHANG J., ZHANG X., HUANG C., ZHONG Y., DENG Y., Mater. Lett., 92 (2013), 61.
  • [23] LIU X., XIE G., HUANG C., XU Q., ZHANG Y., LUO Y., Mater. Lett., 62 (2008), 1878.
  • [24] NI J.A., JIANG W.T., YU K., GAO Y.F., ZHU Z.Q., Electrochim. Acta, 56 (2011), 2122.
  • [25] ZHANG Y., CHEN C., WU W., NIU F., LIU X., ZHONG Y., CAO Y., LIU X., HUANG C., Ceram. Int., 39 (2013), 129.
  • [26] ZHANG Y., LI W., FAN M., ZHANG F., ZHANG J., LIU X., ZHANG H., HUANG C., LI H., J. Alloy. Compd., 544 (2012), 30.
  • [27] ZHANG Y., FAN M., LIU X., XIE G., LI H., HUANG C., Solid State Commun., 152 (2012), 253.
  • [28] ZHANG Y., ZHANG X., HUANG Y., HUANG C., NIU F., MENG C., TAN X., Solid State Commun., 180 (2014), 24.
  • [29] THEOBALD F., CABALA R., BERNARD J., J. Solid State Chem., 17 (1976), 431.
  • [30] WAGNER C.D., RIGGS W.M., DAVIS L.E., MOULDER J.F., Handbook of X-ray Photoelectrom Spectroscopy, Perkin-Elmer Corporation, Minnesota, 1979.
  • [31] MENDIALDUA J., CASANOVA R., BARBAUX Y., J. Electron. Spectrosc., 71 (1995), 249.
  • [32] LEROUX C., NIHOUL G., TENDELOO VAN G., Phys. Rev. B, 57 (1998), 5111.
  • [33] SHI X.Q., JIANG X.H., LU L.D., YANG X.J., WANG X., Mater. Lett., 62 (2008), 1238.
  • [34] SONG L.M., ZHANG S.J., CHEN B., GE J.J., JIA X.C., Colloid. Surface. A, 360 (2010), 1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c01c15b6-3bb3-4a33-b05c-eb6a2c4fb677
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.