Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Wpływ temperatury i szybkości odkształcania na mechanizm deformacji podczas ściskania warstwowego kompozytu brąz aluminiowy-fazy międzymetaliczne
Języki publikacji
Abstrakty
Laminated composites were produced by reactive bonding using CuAl10Fe3Mn2 bronze and titanium foils with thicknesses of 0.6 and 0.1 mm, respectively. To obtain the composite sample five foils of bronze and four of titanium were used. During fabrication, the titanium layers reacted completely and formed intermetallics (Ti2Cu, TiCuAl and TiCu2Al). In order to investigate the compressive behavior of the laminated CuAl10Fe3Mn2-intermetallic composites, isothermal compression tests were conducted at the temperatures of 20, 600 and 800°C with two different strain rates of 1·10-3 s-1 and 2.9·10-3 s-1. The thickness of all the specimens was reduced by 50%. During the compression tests delamination of the layers of the composites was not observed. With an increase in the investigation temperature the yield strength of the composites decreased significantly. The results showed that the deformation temperature and the strain rate were equally responsible for the evolution of deformation during isothermal compression. The most favorable compressive deformation conditions necessary to shape the laminated CuAl10Fe3Mn2-intermetallic phases composites without damaging their layers were determined experimentally.
Wytworzono kompozyty warstwowe z foli z brązu aluminiowego CuAl10Fe3Mn2 o grubości 0,6 mm oraz z foli tytanowej o grubości 0,1 mm. W celu uzyskania kompozytu zastosowano pięć folii z brązu i cztery z tytanu. Podczas reakcji syntezy warstwy tytanu całkowicie przereagowały i powstały fazy międzymetaliczne (Ti2Cu, TiCuAl i TiCu2Al). W celu przeanalizowania mechanizmu deformacji podczas ściskania kompozytów przeprowadzono testy w temperaturze 20, 600 i 800°C, stosując dwie różne prędkości odkształcania: 1·10-3 s-1 oraz 2,9·10-3 s-1. Próby prowadzono do uzyskania 50% redukcji grubości. Podczas prób ściskania nie zaobserwowano delaminacji warstw kompozytu. Stwierdzono znaczny spadek granicy plastyczności kompozytów wraz ze wzrostem temperatury badania. Wyniki pokazały, że zarówno temperatura, jak i prędkość odkształcania miały wpływ na mechanizm deformacji. Eksperymentalnie określono optymalne parametry procesu odkształcania kompozytu CuAl10Fe3Mn2-fazy międzymetaliczne pozwalające na jego kształtowanie bez niszczenia warstw.
Czasopismo
Rocznik
Tom
Strony
43--48
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
- Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Department of Metal Science and Materials Technologies al. 1000-lecia PP 7, 25-314 Kielce, Poland
Bibliografia
- [1] Zhou P., Guo C., Wang E., Wang Z., Chen Y., Jiang F., Interface tensile and fracture behaviour of the Ti/Al3Ti metal-intermetallic laminate (MIL) composite under quasi-static and high strain rates, Materials Science and Engineering A 2016, 665, 66-75.
- [2] Lazurenko D.V., Bataev A., Mali V.I., Jorge A.M., Stark A., Pyczak F., Ognaeva T.S., Maliutina I.N., Synthesis of metal-intermetallic laminate (MIL) composites with modified Al3Ti structure and in situ synchrotron X-ray diffraction analysis of sintering process, Materials & Design 2018, 151, 8-16.
- [3] Thiyaneshwaran N., Sivaprasad K., Ravisankar B., Work hardening behavior of Ti/Al-based metal intermetallic laminates, International Journal of Advanced Manufacturing Technology 2017, 93, 361-374.
- [4] Vecchio K.S., Synthetic multifunctional metallic-intermetallic laminated composites, JOM 2005, 57, 25-31.
- [5] Peng L.M., Li H., Wang J.H., Processing and mechanical behavior of laminated titanium-titanium tri-aluminide (Ti-Al3Ti) composites, Materials Science and Engineering A 2005, 406, 309-318.
- [6] Harach D.J., Vecchio K.S., Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air, Metallurgical and Materials Transactions A 2001, 32, 1493-1505.
- [7] Konieczny M., Mechanical properties of Ti-(Al3Ti+Al) and Ti-Al3Ti laminated composites, Composites Theory and Practice 2013, 13, 2, 102-106.
- [8] Dziadoń A., Mola R., Błaż L., Formation of layered Mg/eutectic composite using diffusional processes at the Mg-Al interface, Archives of Metallurgy and Materials 2011, 56, 677-684.
- [9] Dziadoń A., Mola R., Kompozyt warstwowy magnez-eutektyka odkształcany w próbie ściskania, Kompozyty 2008, 4, 364-368.
- [10] Alman D., Dogan C.P., Hawk J.A., Rawers J.C., Processing, structure and properties of metal-intermetallic layered composites, Materials Science and Engineering A 1995, 192-193, 624-632.
- [11] Wang H., Han J., Du S., Northwood D.O., Effects of Ni foil thickness on the microstructure and tensile properties of reaction synthesized multilayer composites, Materials Science and Engineering A 2007, 445-446, 517-525.
- [12] Bloyer D.R., Venkateswara Rao K.T., Ritchie R.O., Laminated Nb/Nb3Al composites: effect of layer thickness on fatigue and fracture behavior, Materials Science and Engineering A 1997, 239-240, 393-398.
- [13] Dziadoń A., Konieczny M., Structural transformations at the Cu-Ti interface during synthesis of copper-intermetallics layered composite, Kovové Materiály-Metallic Materials 2004, 42, 42-50.
- [14] Konieczny M., Dziadoń A., Mechanical behavior of multi-layer metal-intermetallic laminate composite synthesized by reactive sintering of Cu/Ti foils, Archives of Metallurgy and Materials 2007, 52, 555-562.
- [15] Konieczny M., Deformation mechanisms in copper-intermetallic layered composite at elevated temperature, Kovové Materiály-Metallic Materials 2007, 45, 313-317.
- [16] Kaplan M., Yildiz A.K., The effects of production methods on the microstructures and mechanical properties of aluminum bronze, Materials Letters 2003, 57, 4402-4411.
- [17] Massalski T.B, Murray J.L, Bennet L. H., Baker H., Binary Alloy Phase Diagrams 1992, vol. 3, ASM Handbook.
- [18] Gazda A., Górny Z., Kluska-Nawarecka S., Saja K., Warmuzek M., Effect of modification and heat treatment (solution heat treatment and solution heat treatment + ageing) on structure and mechanical properties of CuAl10Fe3Mn2 bronze, Works of Foundry Research Institute 2010, 12, 37-63.
- [19] Hajek J., Kriz A., Chocholaty O., Pakuła D., Effect of heat treatment on microstructural changes in aluminum bronze, Archives of Metallurgy and Materials 2016, 41, 3, 1271-1276
- [20] Konieczny M., Mola R., Kargul M., Aniołek I., Microstructure evolution of laminated aluminum bronze-intermetallics composite, Proceedings of 27th International Conference on Metallurgy and Materials METAL 2018, 1587-1592.
- [21] Konieczny M., Mechanical properties of laminated CuAl10Fe3Mn2 aluminum bronze-intermetallics compostes, IOP Conference Series: Materials Science and Engineering 2019, 461, 1-7.
- [22] Mola R., Mróz S., Szota P., Effects of the process parameters on the formability of the intermetallic zone in two-layer Mg/Al materials, Archives of Civil and Mechanical Engineering 2018, 18, 4, 1401-1409.
- [23] Wadsworth J., Lesuer D.R., Ancient and modern laminated composites - from the Great Pyramid of Gizeh to Y2K, Materials Characterization 2000, 45, 289-313.
- [24] Ridley N., Xiao Guo Z., Higashi K, An experimental investigation of the superplastic forming behavior of a commercial Al-bronze, Metallurgical and Materials Transactions A 1990, 21, 2957-2966.
- [25] Greenwood G.W., Johnson R.H., The deformation of metals under small stresses during phase transformations, Proceedings of the Royal Society A 1965, 283, 403-422.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c01102a5-112c-46df-94e8-78a1cbaae099