PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of limit cycles and signal stabilization of two dimensional systems with memory type nonlinear elements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a simple, systematic and novel graphical method which uses computer graphics for prediction of limit cycles in two dimensional multivariable nonlinear system having rectangular hysteresis and backlash type nonlinearities. It also explores the avoidance of such self-sustained oscillations by determining the stability boundary of the system. The stability boundary is obtained using simple Routh Hurwitz criterion and the incremental input describing function, developed from harmonic balance concept. This may be useful in interconnected power system which utilizes governor control. If the avoidance of limit cycle or a safer operating zone is not possible, the quenching of such oscillations may be done by using the signal stabilization technique which is also described. The synchronization boundary is laid down in the forcing signal amplitudes plane using digital simulation. Results of digital simulations illustrate accuracy of the method for 2×2 systems.
Rocznik
Strony
285--330
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Department of Electrical Engineering, C.V. Raman College of Engineering, Bhubaneswar, Odisha (INDIA) 752054
autor
  • Department of Electrical Engineering, C.V. Raman College of Engineering, Bhubaneswar, Odisha (INDIA) 752054
Bibliografia
  • [1] D. P. Atherton: Nonlinear control engineering-describing function analysis and design, Van Nostrand Reingold, London, 1975.
  • [2] D. P. Atherton and H. T. Dorrah: A survey on nonlinear oscillations, International Journal of Control, 31(6), (1980), 1041-1105.
  • [3] I. A. Chidambaram and S. Velusami: Decentralized biased controllers for load - frequency control of inter connected power systems considering governor dead band non - linearity, In: INDICON, 2005, Annual IEEE, (2005), 521-525.
  • [4] M. Eftekhari and S. D. Katebi: Evolutionary search for limit cycle and controller design in multivariable nonlinear systems, Asian Journal of Control, 8(4), (2006), 345-358.
  • [5] O. R. Fendrich: Describing functions and limit cycles, IEEE Transactions On Automatic Control, 37(4), (1992), 486-487.
  • [6] A. Gelb and W. E. Vander Velde: Multiple-input describing functions and nonlinear system design, McGraw-Hill, New York. 1968.
  • [7] R. Hayes and S. P. Maroques: Prediction of limit cycle oscillations under uncertainty using a Harmonic Balance Method, Elsevier, Computers and Structures, 148, (2015), 1-13.
  • [8] D. Iurashev, G. Campa, V. V. Anisimov, and E. Cosatto: Three-step approach for prediction of limit cycles pressure oscillations in combustion chambers of gas turbines, Taylor and Fransis, Combustion Theory and Modelling, 21(6), (2017), 1-28.
  • [9] V. Jain, D. Garg, and A. K. Arora: Digital Simulation of Limit Cycle in Second and Higher Order Analog Filter using MATLAB, International Journal of Computer Applications, 53(2), (2012), 29-32.
  • [10] M. Katebi, H. Tawfik and S. D. Katebi: Limit Cycle Prediction Based on Evolutionary Multi-objective Formulation, Mathematical Problems in Engineering, (2009), 1-17.
  • [11] J. Li, Y. Xia, A. S. Morgans, and X. Han: Numerical prediction of combustion instability limit cycle oscillations for a combustor with a long flame, Elsevier, Combustion and flame, 185, (2017), 28-43.
  • [12] L. H. Lim and A. P. Loh: Forced and sub- harmonic oscillations in relay feedback systems, Journal of the Institution of Engineers Singapore, 45(5), (2005), 88-100.
  • [13] C. H. Lin and K. W. Han: Prediction of limit- cycles in nonlinear two input two-output control systems, IEE Proceedings-Control Theory and Applications, 146(3), (1999), 253-258.
  • [14] A. P. Loh and V. U. Vasnani: Necessary conditions for limit cycles in multi loop relay systems, IEE Proceedings-Control Theory and Applications, 141(3), (1994), 163-168.
  • [15] C. F. Lu, C. C. Liu, and C. J. Wu: Effect of battery energy storage system on load frequency control considering governor dead band and generation rate constraint, IEEE Transactions energy Conversions, 10(1), (1995), 555-561.
  • [16] P. N. Nikiforuk and B. L. M. Wintonyk: Frequency response analysis of two-dimensional nonlinear symmetrical and non symmetrical control systems, Int. J. Control, 7, (1968), 49-62.
  • [17] R. Oldenburger and T. Nakada: Signal stabilization of self-oscillating systems, IRE Transactions on Automatic Control, 6(3), (1961), 319-325.
  • [18] A. G. Parlos, A. F. Henry, F. C. Schweppe, L. A. Gould, and D. D. Lanning: Nonlinear multivariable control of nuclear power plants based on the unknown-but-bounded disturbance model, IEEE Transactions on Automatic Control, 33(2), (1988), 130-137.
  • [19] B. B. Pati and K. C. Patra: Normalised phasor Diagram Method of Prediction of Limit Cycle for Two-dimensional Nonlinear System, Journal - Institution of Engineers India Part Electrical Engineering Division, (2000), 140-144.
  • [20] B. B. Pati and K. C. Patra: Dither in Two- dimensional System with Memory less Non- linearity and System Stability, Journal – Institution of Engineers India Part Electrical Engineering Division, 84, (2004), 173-177.
  • [21] K. C. Patra: Analysis of self-oscillations and signal stabilisation of two dimensional nonlinear systems, Ph. D. Thesis, Electrical Engg, IIT Kharagpur, India (1986).
  • [22] K. C. Patra and B. B. Pati: An investigation of forced oscillation for signal stabilisation of two-dimensional nonlinear system, Systems and Control Letters, 35(4), (1998), 229-236.
  • [23] K. C. Patra, B. B. Pati, and J. Kacprzyk: Prediction of limit cycles in nonlinear multivariable systems, Archives of Control Science, 4, (1995), 281-298.
  • [24] K. C. Patra, B. B. Pati, and J. Kacprzyk: Signal stabilisation of two dimensional non linear relay control systems, Archives of Control Science, 6, (1997), 89-102.
  • [25] K. C. Patra and Y. P. Singh: Structural formulation and prediction of limit cycle for multivariable nonlinear system, IETE Journal of Research, 40(5-6), (1994), 253-260.
  • [26] K. C. Patra and Y. P. Singh: Graphical method of prediction of limit cycle for multivariable nonlinear systems, IEE Proceedings-Control Theory and Applications, 143(5), (1996), 423-428.
  • [27] P. K. Rajagopalan and J. Mishra: Dual-input describing function of double-valued nonlinearities, In Proceedings of the Institution of Electrical Engineers, IET, 116(10), (1969, October), 1764-1768.
  • [28] P. K. Rajagopalan and Y. P. Singh: Analysis of harmonics and almost periodic oscillations in forced self-oscillating systems, In Proc. 4th IFAC Congress, Warsaw, 41, (1969), 80-122.
  • [29] G. V. S. Raju and R. Josselson: Stability of reactor control systems in coupled core reactors. IEEE Transactions on Nuclear Science, 18(1), (1971). 388-394.
  • [30] Z. Shi and Z. Zuo: Backstepping control for gear transmission servo systems with backlash nonlinearity, IEEE Trans. Autom. Sci. Eng., 12(2), (2015), 752-757.
  • [31] Y. P. Singh: Some aspects of forced oscillations of non-linear systems (Doctoral dissertation, Ph. D. Thesis, Electrical Engg, IIT Kharagpur, India. (1968).
  • [32] T. S. Tsay: Load-frequency control of inter connected power system with governor backlash nonlinearities, Electrical Power and Energy Systems, 33, (2011), 1542-1549.
  • [33] T. S. Tsay: Limit cycle predictions of nonlinear multivariable feedback control systems with large transportation lags. Journal of Control Science and Engineering, 7, (2011), 1-11.
  • [34] T. S. Tsay: Stability analyses of nonlinear multivariable feedback control systems, WSEAS Transactions on Systems, 11(4), (2012), 140-151.
  • [35] S. C. Tripathy, G. S. Hop, and O. P. Malik: Optimisation of Load frequency control parameters for power system with read steam turbines and governor dead band nonlinearity, PROC IEE. Ptc, 129(1), (1982), 10-16.
  • [36] C. Wang, M. Yang, W. Zheng, K. Hu, and D. Xu: Analysis and Suppression of Limit Cycle Oscillation for Transmission System With Backlash Nonlinearity, IEEE transactions on Industrial Electronics, 64(12), (2017), 9261-9270.
  • [37] M. Zhuang and D. P. Atherton: PID controller design for a TITO system, IEE Proceedings-Control theory and applications, 141(2), (1994), 111-120.
Uwagi
EN
The authors wish to thank the C.V. Raman College of Engineering, Bhubaneswar – 752054, Odisha, India, for providing computer facilities for carrying out the research and the preparation of this paper.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0105f9c-3df7-4af8-bf3e-24495ea945e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.