Identyfikatory
Warianty tytułu
Ocena składu chemicznego słonecznika bulwiastego (Helianthus tuberosus L.) jako surowca energetycznego
Języki publikacji
Abstrakty
This work concerns the analysis of variation of chemical composition of ash of aboveground part of Jerusalem artichoke as a renewable energy source. Factors of the experiment were a cultivars of Helianthus tuberosus: Albik and Rubik, grown on sandy soil, good rye complex under constant fertilization and full dose of manure. In the ash were determined: the content of macro- and microelements and some heavy metals. Phenotypic variation of Jerusalem artichoke, in terms of each trait was the combined effect of genetic variation and environmental. Decisive share of cultivars, the total variance, had the contents of potassium, magnesium, nitrogen, phosphorus and manganese. Dominant role in the overall volatility of chlorine, zinc, cadmium, cobalt and copper play environmental variability, in the case of sodium, sulphur, molybdenum, iron, aluminium, chromium and lead interaction of varieties and years. Biomass of aboveground parts of Jerusalem artichoke contain smaller amounts of cadmium, lead and zinc than the limit values set out in the German DIN 51731st.
Praca dotyczy analizy zmienności składu chemicznego popiołu części nadziemnych słonecznika bulwiastego, jako odnawialnego źródła energii. Czynnikami eksperymentu były odmiany Helianthus tuberosus: Albik i Rubik, uprawiane na glebie lekkiej, kompleksu żytniego dobrego, w warunkach stałego nawożenia mineralnego i pełnej dawki obornika. W popiele tych roślin oznaczano: zawartość makro i mikroelementów oraz wybranych metali ciężkich. Zmienność fenotypowa odmian słonecznika bulwiastego, pod względem każdej cechy, była łącznym efektem zmienności genetycznej i środowiskowej. Decydujący udział odmian, w wariancji całkowitej, miała zawartość: potasu, magnezu, azotu, fosforu i manganu. Dominującą rolę w zmienności ogólnej chloru, cynku, kadmu, kobaltu i miedzi odgrywała zmienność środowiskowa, zaś w przypadku sodu, siarki, molibdenu, żelaza, glinu, chromu i ołowiu – współdziałanie odmian i lat. Biomasa części nadziemnych słonecznika bulwiastego zawierała mniejsze ilości kadmu, ołowiu i cynku niż wartości dopuszczalne, określone w niemieckiej normie DIN 51731.
Czasopismo
Rocznik
Tom
Strony
689--699
Opis fizyczny
Bibliogr. 32 poz., tab.
Twórcy
autor
- Department of Plant Production and Commodity, University of Life Sciences, ul. Akademicka 15, 20–950 Lublin, Poland
autor
- Department of Soil Science and Agricultural Chemistry, University of Natural Sciences – Humanities in Siedlce, ul. B. Prusa 14, 08–110 Siedlce, Poland
Bibliografia
- [1] Kays SJ, Nottingham SF. Biology and chemistry of Jerusalem artichoke (Helianthus tuberosus L.). Boca Raton, London, New York: CRC Press, Taylor & Francis Group; 2008. doi.org/10.1016/j.phytol.2008.10.003.
- [2] Izsáki Z, Kádi GN. Biomass Accumulation and Nutrient Uptake of Jerusalem Artichoke (Helianthus tuberosus L). Amer J Plant Sci. 2013;4:1629-1640. Published online, August 2013 (http://www.scirp.org/journal/ajps). http://dx.doi.org/10.4236/ajps.2013.48197.
- [3] Sawicka B, Skiba D, Michałek W. Jerusalem artichoke as an alternative source of biomass the Lublin region. Exercise Books Problem Progress of Agricultural Sciences. 2009;542:465-479.
- [4] Scholz V, Kern J. Soil carbon, soil nitrate, and soil emissions of nitrous oxide during cultivation of energy crops. Nutrient Cycling in Agroecosystems. 2010;87(2):175-186. DOI: 10.1007/s10705-009-9326-z. (http://link springer.com/article/10.1007/s10705-009-9326-z#page-2).
- [5] Scholz VV, Ellerbrock R. The growth productivity and environmental impact of the cultivation of energy crops on sandy soil in Germany. Biomass and Bioenergy. 2002;23(2):81-92. DOI: http://dx.doi.org/10.1016/S0961-9534(02)00036-3.
- [6] Cai X, Zhang X, Wang D. Land availability for biofuel production. Environ Sci Technol. 2011;45:334-339. DOI: 10.1021/es103338e.
- [7] Jungers JM, Fargione JE, Sheaffer CC, Wyse DL, Lehman C. Energy Potential of Biomass from Conservation Grasslands in Minnesota, USA. PLoS ONE. 2013;8(4),e61209. DOI: 10.1371/journal.pone.0061209.
- [8] Kalembasa D. The amount and composition of ash from biomass energy crops. Acta Agrophys. 2006;7(4):909-914.
- [9] Terzic S, Atlagic J. Nitrogen and Sugar Content Variability in Tubers of Jerusalem Artichoke (Helianthus tuberosus L). Genetika. 2009;41(3):289-295. DOI: 10.2298/GENSR0903289.
- [10] Denoroy P. The Crop Physiology of Helianthus tuberosus (L.), a Model Oriented View. Biomass Bioenerg, 1996;11(1):11-32. DOI: 10.1016/0961-9534(96)00006-2.
- [11] Dorell DG, Chubey BB. Irrigation, Fertilizer, Harvest Dates and Storage on the Reducing and Fructose Concentrations of Jerusalem artichoke Tubers. Canadian Journal of Plant Science. 1977;57(2):591-596. DOI: 10.4141/cjps77-084.
- [12] Augustynowicz J, Pietkiewicz S, Kalaji MH, Russel S. Effect of sewage sludge fertilization on selected parameters of the biological activity of the soil and the efficiency of the photosynthetic apparatus artichoke (Helianthus tuberosus L). Water – Environment – Rural Areas. 2010;10[2(30)]:7-18.
- [13] Sawicka B. The energy value of artichoke (Helianthus tuberosus L) as a source of biomass. Scientific Papers of the University of Life Sciences. 2010;47(578):245-256.
- [14] Seiler GJ, Campbell LG. Genetic Variability for Mineral Concentration in the Forage of Jerusalem artichoke Cultivars, Euphytica. 2006;150(1-2):281-288. DOI: 10.1007/s10681-006-9119-2.
- [15] Wangsomnuk PP, Khampa S, Jogloy S, Srivong T, Patanothai A, Fu YB. Assessing Genetic Structure and Relatedness of Jerusalem Artichoke (Helianthus tuberosus L) Germplasm with RAPD, ISSR and SRAP Markers. American Journal of Plant Sciences. 2011;2(6):753-764. DOI: 10.4236/ajps.2011.26090.
- [16] Harmankaya M, Juhaimi FA, Özcan MM. Mineral Contents of Jerusalem Artichoke (Helianthus tuberosus L) Growing Wild in Turkey. Analytical Letters. 2012;45(15):2269-2275. DOI: 10.1080/00032719.2012.686131.
- [17] Sawicka B, Kalembasa D. Variability in macroelement content in tubers of Helianthus tuberosus L at different nitrogen fertilization levels. Acta Sci Pol. Agricultura. 2008;7(1):67-82.
- [18] Anonimus, Fertilizer recommendations. Part I. The numbers limit the valuation content in soil macro-and micronutrients. Pulawy: IUNG Pulawy; 1990;P(44):26 (in Polish).
- [19] Luterbacher J, Xoplaki E, Küttel M, Zorita E, Gonzáles-Rouco FJ, Jones PD, Stössel M, Rutishauser T, Wanner H, Wibig J, Przybylak R. Climate change in Poland in the past centuries and its relationship to European climate: evidence from reconstructions and coupled climate models. [In:] The Polish Climate in the European Context: An Historical Overview. Przybylak R, Majorowicz J, Brázdil R, Kejna M, editors. Berlin, Heidelberg, New York: Springer Verlag; 2010: 3-39. http://www.geography.unibe.ch/content/e9500/e10031/ e13657/e14587/e16681/e16691/climdyn_2010_luterbacher_et_al_2_eng.pdf.
- [20] Németh G, Izsáki Z. Macro- and Microelement Content and Uptake of Jerusalem Artichoke (Helianthus tuberosus L). Cereal Research Communications. 2006;34(1):597-600. DOI: 10.1556/CRC.34.2006.1.149.
- [21] DIN 51731. German quality standard for wood pellets. CERTCO. Deutsches Institut für Normung (DIN).
- [22] Sunab WG, Zhaoc H, Yanc HX, Sunc BB, Dongc SS, Zhangc CW, Qina CW. The Pyrolysis Characteristics and Kinetics of Jerusalem artichoke Stalk Using Thermogravimetric Analysis. 2012;34(7):626-639. http://www.tandfonline.com/doi/abs/10.1080/15567036.2011.615006
- [23] Bątorek-Giesa N, Jagustyn B. The chlorine content in the solid biomass used for energy purposes. Water – Environment – Rural Areas. 2009;40:396-401.
- [24] Gruca-Królikowska S, Wacławek W. Metals environment. Part II. Effect of heavy metals on plants. Chem Dyd Ekol Metrol. 2006;11(1-2):41-56.
- [25] Barta J, Pátkai G. Chemical Composition and Stor-ability of Jerusalem Artichoke Tubers. Acta Alimentaria. 2007;36(2):257-267. DOI: 10.1556/AAlim.36.2007.2.13.
- [26] Jasiewicz C, Antonkiewicz J. Heavy metal extraction by Jerusalem artichoke (Helianthus tuberosus L) from soils contaminated with heavy metals. Chem Environ Eng. 2002;9(4):379-386.
- [27] Şat IG. The effect of heavy metals on peroxidase from Jerusalem artichoke (Helianthus tuberosus L) tubers. African Journal of Biotechnology. 2008;7(13):2248-2253.
- [28] Seiler GJ, Campbell LG. Genetic variability for mineral element concentrations of wild Jerusalem artichoke forage. Crop Sci. 2004;44:289-292.
- [29] McLaurin WJ, Somda ZC, Kays S. J. Jerusalem Artichoke Growth, Development, and Field Storage.
- I. Numerical Assessment of Plant Part Development and Dry Matter Acquisition and Allocation. Journal of Plant Nutrition. 1999;22(8):1303-1313. DOI: 10.1080/01904169909365714.
- [30] Long X, Huang Z, Zhang Z, Li Q, Rengel Z, Liu Z. Seawater Stress Differentially Affects Germination, Growth, Photosynthesis, and Ion Concentration in Genotypes of Jerusalem Artichoke (Helianthus tuberosus L). Journal of Plant Growth Regulation. 2010;29:223-231. DOI: 10.1007/s00344-009-9125-4.
- [31] Zhang ZH, Rengel Z, Meney K. Cadmium Accumulation and Translocation in Four Emergent Wetland Species’. Water, Air And Soil Pollution. 2010;212:239-249.DOI: http://dx.doi.org/10.1007/s11270-010-0339-7.
- [32] Khan AA, de Jong W, Jansens PJ, Spliethof H. Biomass combustion in fluidized bed boilers. Potential problems and remedies. Fuel Processing Technology. 2009;90(1):21-50. DOI 10.1016/j.fuproc.2008.07.012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c00acd7d-e885-4e63-a7ad-a493019ddde9