PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ferroelectric effect in oxide based pyro-phototronic photodetector

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Zjawisko ferroelektryczne w fotodetektorze bazującym na tlenkach wykorzystującym efekt pirofototroniczny
Języki publikacji
EN
Abstrakty
EN
Growing number of photodetectors in use might require sheer amounts of energy to power them and in order to prevent that, studies on self-powered detectors are gaining more popularity. A common approach synergistically couples multiple effects, to combine all of their advantages. In this work we attempt to refine characteristics of a pyro-phototronic device, based on Si/SnOx/ZnO heterojunction, by the introduction of a ferroelectric BCZT (0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3) layer. The influence of the ferroelectric polarization on the performance of the detector is observed, however the enhancement of electric field does not result in improvement of detection parameters.
PL
Rosnąca liczba fotodetektorów używanych dookoła nas może w przyszłości wymagać ogromnych nakładów energii do zasilania. By temu zapobiec, popularnym przedmiotem badan są fotodetektory samozasilające, powszechnie opierające się na strukturach wykorzystujących jednocześnie wiele różnych efektów. W tej pracy staramy się poprawić parametry detektora pirofototronicznego bazującego na złączu Si/SnOx/ZnO, wprowadzając do niego ferroelektryczną warstwę BCZT (0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3). Obserwujemy wpływ polaryzacji ferroelektryka na osiągi urządzenia, jednak zwiększenie pola elektrycznego nie skutkuje poprawą parametrów detekcji.
Rocznik
Strony
249--251
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
  • Department of Quantum Technologies, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
  • Department of Quantum Technologies, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
  • University of Minho, CMEMS—UMINHO, Campus de Azurem, 4804-533 Guimaraes, Portugal
  • LABBELS –Associate Laboratory, Braga, Guimarães, Portugal
  • Centre of Physics of University of Minho and Porto (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal
  • Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
Bibliografia
  • [1] Y. Wang, L. Zhu, Y. Feng, Z. Wang, and Z. L. Wang, “Comprehensive Pyro-Phototronic Effect Enhanced Ultraviolet Detector with ZnO/Ag Schottky Junction,” Adv. Funct. Mater., vol. 29, no. 5, p. 1807111, Feb. 2019, doi: https://doi.org/10.1002/adfm.201807111.
  • [2] Z. Wang et al., “Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing,” Nat. Commun., vol. 6, no. 1, p. 8401, 2015, doi: 10.1038/ncomms9401.
  • [3] S. Sahare et al., “Pyro-phototronic effect: An effective route toward self-powered photodetection,” Nano Energy, vol. 107. Elsevier, p. 108172, Mar. 01, 2023, doi: 10.1016/j.nanoen.2023.108172.
  • [4] L. Zhu and Z. L. Wang, “Recent Progress in Piezo-Phototronic Effect Enhanced Solar Cells,” Adv. Funct. Mater., vol. 29, no. 41, p. 1808214, Oct. 2019, doi: 10.1002/ADFM.201808214.
  • [5] K. Maity et al., “Piezo-phototronic effect in highly stable CsPbI3-PVDF composite for self-powered nanogenerator and photodetector,” Nano Energy, vol. 92, p. 106743, Feb. 2022, doi: 10.1016/J.NANOEN.2021.106743.
  • [6] A. R. Jayakrishnan et al., “Inorganic ferroelectric thin films and their composites for flexible electronic and energy device applications: current progress and perspectives,” Journal of Materials Chemistry C, vol. 11, no. 3. The Royal Society of Chemistry, pp. 827–858, Jan. 19, 2022, doi: 10.1039/d2tc04424b.
  • [7] J. P. B. Silva et al., “Large ferro-pyro-phototronic effect in 0.5Ba(Zr 0.2 Ti 0.8 )O 3-0.5(Ba 0.7 Ca 0.3 )TiO 3 thin films integrated on silicon for photodetection,” 2022, doi: 10.1002/cey2.297.
  • [8] A. B. Swain, M. Rath, S. Pal, M. S. Ramachandra Rao, V. Subramanian, and P. Murugavel, “Self-polarization effect on large photovoltaic response in lead free ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 epitaxial film,” Appl. Phys. Lett., vol. 113, no. 23, p. 233902, Dec. 2018, doi: 10.1063/1.5068699.
  • [9] J. P. B. Silva et al., “Ferroelectric phase transitions studies in 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics,” J. Electroceramics, vol. 35, no. 1–4, pp. 135–140, Dec. 2015, doi: 10.1007/S10832-015-0005-Y/METRICS.
  • [10] Y. Liu, Y. Ji, Y. Xia, L. Wu, C. R. Bowen, and Y. Yang, “Enhanced photocurrent in ferroelectric Bi0.5Na0.5TiO3 materials via ferro-pyro-phototronic effect,” Nano Energy, vol. 98, p. 107312, Jul. 2022, doi: 10.1016/J.NANOEN.2022.107312.
  • [11] K. Zhao, B. Ouyang, and Y. Yang, “Enhancing Photocurrent of Radially Polarized Ferroelectric BaTiO3 Materials by Ferro-Pyro-Phototronic Effect,” iScience, vol. 3, pp. 208–216, May 2018, doi: 10.1016/J.ISCI.2018.04.016.
  • [12] J. P. B. Silva et al., “High-performance self-powered photodetectors achieved through the pyro-phototronic effect in Si/SnOx/ZnO heterojunctions,” Nano Energy, vol. 89, no. May, p. 106347, Nov. 2021, doi: 10.1016/j.nanoen.2021.106347.
  • [13] J. P. B. Silva et al., “Perovskite ferroelectric thin film as an efficient interface to enhance the photovoltaic characteristics of Si/SnOx heterojunctions,” J. Mater. Chem. A, vol. 8, no. 22, pp. 11314–11326, 2020, doi: 10.1039/D0TA02198A.
  • [14] J. P. B. Silva et al., “High-Performance Ferroelectric–Dielectric Multilayered Thin Films for Energy Storage Capacitors,” Adv. Funct. Mater., vol. 29, no. 6, Feb. 2019, doi: 10.1002/adfm.201807196.
  • [15] S. Qiao, H. Sun, J. Liu, G. Fu, and S. Wang, “The nanowire length dependence of the photoresponse and Pyro-phototronic response in the ZnO-based heterojunctions,” Nano Energy, vol. 95, p. 107004, May 2022, doi: 10.1016/J.NANOEN.2022.107004.
  • [16] M. Xue, W. Peng, X. Tang, Y. Cai, F. Li, and Y. He, “Pyro-Phototronic Effect Enhanced Pyramid Structured p-Si/n-ZnO Nanowires Heterojunction Photodetector,” ACS Appl. Mater. Interfaces, vol. 15, p. 4689, Jan. 2022, doi: 10.1021/ACSAMI.2C18011/ASSET/IMAGES/LARGE/AM2C180 11_0006.JPEG
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c002d325-4379-452b-a28c-1c143303b85b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.