PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The quality of the wood bonding depending on the method of applying the selected thermoplastic biopolymers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The quality of the wood bonding depending on the method of applying the selected thermoplastic biopolymers. The aim of the research was to determine the effect of the method of applying the biopolymer on the surface of bonding solid wood elements on the quality of the obtained adhesive connection. The results of conducted mechanical research show that the highest average value of shear strength was observed for birch lamellas bonded with PLA, both with the first and second method of application. In case of estimating the quality of the bonding of wooden elements, better results were achieved for PLA and the second method of application the "green" adhesive.
Twórcy
  • Faculty of Wood Technology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
  • Department of Technology and Entrepreneurship in Wood Industry, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW
Bibliografia
  • 1. BAKKEN, A. C., AND TALEYARKHAN, R. P. (2020a). “Plywood wood based compositesusing crystalline/amorphous PLA polymer adhesives,” International Journal ofAdhesion and Adhesives, Elsevier Ltd, 99(February), 102581. DOI:10.1016/j.ijadhadh.2020.102581
  • 2. BAKKEN, A. C., AND TALEYARKHAN, R. P. (2020b). “Plywood wood based compositesusing crystalline/amorphous PLA polymer adhesives,” International Journal ofAdhesion and Adhesives, Elsevier Ltd, 99(February), 102581. DOI:10.1016/j.ijadhadh.2020.102581
  • 3. BASKARAN, M., HASHIM, R., SULAIMAN, O., AWALLUDIN, M. F., SUDESH, K., ARAI, T.,AND KOSUGI, A. (2019). “Properties of Particleboard Manufactured from Oil PalmTrunk Waste Using Polylactic Acid as a Natural Binder,” Waste and BiomassValorization, Springer Netherlands, 10(1), 179–186. DOI: 10.1007/s12649-017-0026-7
  • 4. BLEDZKI, A. K., AND JASZKIEWICZ, A. (2010). “Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres - A comparative study to PP,” Composites Science and Technology, Elsevier Ltd, 70(12), 1687-1696, DOI: 10.1016/j.compscitech.2010.06.005
  • 5. BUGNICOURT, E., CINELLI, P., LAZZERI, A., AND ALVAREZ, V. (2014). “Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging,” Express Polymer Letters, 8(11), 791–808. DOI: 10.3144/expresspolymlett.2014.82
  • 6. CHAN, C. M., VANDI, L. J., PRATT, S., HALLEY, P., RICHARDSON, D., WERKER, A., AND LAYCOCK, B. (2019). “Insights into the biodegradation of PHA / wood composites: Micro- and macroscopic changes,” Sustainable Materials and Technologies, Elsevier B.V., 21, e00099. DOI: 10.1016/j.susmat.2019.e00099
  • 7. CHEE, W. K., IBRAHIM, N. A., ZAINUDDIN, N., ABD RAHMAN, M. F., AND CHIENG, B. W. (2013). “Impact toughness and ductility enhancement of biodegradable poly(lactic acid)/poly(ε-caprolactone) blends via addition of glycidyl methacrylate,” Advances in Materials Science and Engineering, 2013. DOI: 10.1155/2013/976373
  • 8. DOMÍNGUEZ-ROBLES, J., TARRÉS, Q., DELGADO-AGUILAR, M., RODRÍGUEZ, A., ESPINACH, F. X., AND MUTJÉ, P. (2018). “Approaching a new generation of fiberboards taking advantage of self lignin as green adhesive,” International Journal of Biological Macromolecules, Elsevier B.V., 108, 927–935. DOI: 10.1016/j.ijbiomac.2017.11.005
  • 9. GATENHOLM, P., KUBÁT, J., AND MATHIASSON, A. (1992). “Biodegradable natural composites. I. Processing and properties,” Journal of Applied Polymer Science, 45(9), 1667–1677.
  • 10. GUMOWSKA, A., AND KOWALUK, G. (2020). “Bonding of birch solid wood of sawmill surface roughness with use of selected thermoplastic biopolymers,” Annals of Warsaw University of Life Sciences SGGW Forestry and Wood Technology, 106, 9–15.
  • 11. KUCIEL, S., MAZUR, K., AND HEBDA, M. (2020). “The Influence of Wood and Basalt Fibres on Mechanical, Thermal and Hydrothermal Properties of PLA Composites,” Journal of Polymers and the Environment, Springer US, 28(4), 1204–1215. DOI: 10.1007/s10924-020-01677-z
  • 12. LUEDTKE, J., GAUGLER, M., GRIGSBY, W. J., AND KRAUSE, A. (2019). “Understanding the development of interfacial bonding within PLA/wood-based thermoplastic sandwich composites,” Industrial Crops and Products, Elsevier, 127(October 2018), 129–134. DOI: 10.1016/j.indcrop.2018.10.069
  • 13. MADYAN, O. A., WANG, Y., CORKER, J., ZHOU, Y., DU, G., AND FAN, M. (2020). “Classification of wood fibre geometry and its behaviour in wood poly(lactic acid) composites,” Composites Part A: Applied Science and Manufacturing, Elsevier, 133(March), 105871. DOI: 10.1016/j.compositesa.2020.105871
  • r
  • 14. MARKARIAN, J. (2008). “Biopolymers present new market opportunities for additives in packaging,” Plastics, Additives and Compounding, 10(3), 22–25. DOI: 10.1016/S1464-391X(08)70091-6
  • 15. NAGARAJAN, V., MOHANTY, A. K., AND MISRA, M. (2016). “Perspective on Polylactic Acid (PLA) based Sustainable Materials for Durable Applications: Focus on Toughness and Heat Resistance,” ACS Sustainable Chemistry and Engineering, 4(6), 2899–2916. DOI: 10.1021/acssuschemeng.6b00321
  • 16. OKUNOLA A, A., KEHINDE I, O., OLUWASEUN, A., AND OLUFIROPO E, A. (2019). “Public and Environmental Health Effects of Plastic Wastes Disposal: A Review,” Journal of Toxicology and Risk Assessment, 5(2). DOI: 10.23937/2572-4061.1510021
  • 17. OZYHAR, T., BARADEL, F., AND ZOPPE, J. (2020). “Effect of functional mineral additive on processability and material properties of wood-fiber reinforced poly(lactic acid) (PLA) composites,” Composites Part A: Applied Science and Manufacturing, Elsevier, 132(January), 105827. DOI: 10.1016/j.compositesa.2020.10582785
  • 18. PLACKETT, D., ANDERSEN, T. L., PEDERSEN, W. B., AND NIELSEN, L. (2003). “Biodegradable composites based on L-polylactide and jute fibres,” Composites Science and Technology, 63(9), 1287–1296. DOI: 10.1016/S0266-3538(03)00100-3
  • 19. RAGHU, N., KALE, A., RAJ, A., AGGARWAL, P., AND CHAUHAN, S. (2018). “Mechanical and thermal properties of wood fibers reinforced poly(lactic acid)/thermoplasticized starch composites,” Journal of Applied Polymer Science, 135(15), 1–10. DOI: 10.1002/app.46118
  • 20. SINGH, S., AND MOHANTY, A. K. (2007). “Wood fiber reinforced bacterial bioplastic composites: Fabrication and performance evaluation,” Composites Science and Technology, 67(9), 1753–1763. DOI: 10.1016/j.compscitech.2006.11.009
  • 21. TĂNASE, E. E., POPA, M. E., RÂPĂ, M., AND POPA, O. (2015). “PHB/Cellulose Fibers Based Materials: Physical, Mechanical and Barrier Properties,” Agriculture and Agricultural Science Procedia, 6, 608–615. DOI: 10.1016/j.aaspro.2015.08.099
  • 22. TORRES-GINER, S., HILLIOU, L., MELENDEZ-RODRIGUEZ, B., FIGUEROA-LOPEZ, K. J., MADALENA, D., CABEDO, L., COVAS, J. A., VICENTE, A. A., AND LAGARON, J. M. (2018). “Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil,” Food Packaging and Shelf Life, Elsevier, 17(December 2017), 39–49. DOI: 10.1016/j.fpsl.2018.05.002
  • 23. YU, L., DEAN, K., AND LI, L. (2006). “Polymer blends and composites from renewable resources,” 31, 576–602. DOI: 10.1016/j.progpolymsci.2006.03.002
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bffd3553-aaf0-4e54-8dfb-fbbddfa97641
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.