PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multiobjective and multiscale optimization of composite materials by means of evolutionary computations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the multiobjective and multiscale optimization of heterogeneous structures by means of computational intelligence methods. The aim of the paper is to find optimal properties of composite structures in a macro scale modifying their microstructure. At least two contradictory optimization criteria are considered simultaneously. A numerical homogenization concept with a representative volume element is applied to obtain equivalent macro-scale elastic constants. An in-house multiobjective evolutionary algorithm MOOPTIM is applied to solve the considered optimization tasks. The finite element method is used to solve the boundary-value problem in both scales. A numerical example is attached.
Rocznik
Strony
397--409
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
  • Silesian University of Technology, Institute of Computational Mechanics and Engineering, Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Computational Mechanics and Engineering, Gliwice, Poland
Bibliografia
  • 1. Beluch W., Burczyński T., 2014, Two-scale identification of composites’ material constants by means of computational intelligence methods, Archives of Civil and Mechanical Engineering, 14, 4, 636-646
  • 2. Beluch W., Burczyński T., Długosz A., 2008, Evolutionary multi-objective optimization of laminates, [In:] Evolutionary Computation and Global Optimization, J. Arabas (Edit.), Warsaw University of Technology Publishing House, Scientific Papers, Electronics 165, 43-50
  • 3. Bensoussan A., Lionis J.L., Papanicolaou G., 1978, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam
  • 4. Branke J., Deb K., 2004, Integrating user preferences into evolutionary multi-objective optimization, [In:] Knowledge Incorporation in Evolutionary Computation, Y. Jin (Edit.), Springer, 461-477
  • 5. Brebbia C.A., Dominiguez J., 1989, Boundary Elements an Introductory Course, Computational Mechanics Publications, Southampton Boston
  • 6. Buryachenko V., 2007, Micromechanics of Heterogeneous Materials, Springer, New York 7. Burczyński T., 1995, Boundary Element Method in Mechanics (in Polish), WNT, Warsaw
  • 8. Burczyński T., Mrozek A., Kuś W., 2007, A computational continuum-discrete model of materials, Bulletin of the Polish Academy of Sciences – Technical Sciences, 55, 1, 85-89
  • 9. Collette Y., Siarry P., 2003, Multiobjective Optimization: Principles and Case Studies, Springer
  • 10. De Castro L.N., Timmis J., 2002, Artificial Immune Systems: a New Computational Intelligence Approach, Springer
  • 11. Deb K., 1999, Multi-objective genetic algorithms: problem difficulties and construction of test problems, Evolutionary Computation, 7, 3, 205-230
  • 12. Deb K., 2001, Multi-Objective Optimization Using Evolutionary Algorithms, Wiley
  • 13. Deb K., Pratap A., Agarwal S., Meyarivan T., 2002, A fast and elitist multi-objective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6, 2, 181-197
  • 14. Długosz A., 2010, Multiobjective evolutionary optimization of MEMS structure, Computer Assisted Mechanics and Engineering Sciences, 17, 1, 41-50
  • 15. Długosz A., 2013, Multicriteria Optimization in Coupled Field Problems (in Polish), Monography (497), Silesian University of Technology Publishing House
  • 16. Długosz A., 2014, Optimization in multiscale thermoelastic problems, Computer Methods in Materials Science, 14, 1, 86-93
  • 17. Ehrgott M., 2005, Multicriteria Optimization, Springer
  • 18. Eshelby J.D., 1957, The determination of the field of an ellipsoidal inclusion and related problems, Proceedings of the Royal Society of London, 241, 376-396
  • 19. Gibson R. F., 2012, Principles of Composite Material Mechanics, CRC Press
  • 20. Hashin Z., 1964, Theory of mechanical behavior of heterogeneous media, Applied Mechanics Reviews, 17, 1-9
  • 21. Hill R., 1963, Elastic properties of reinforced solids: Some theoretical principles, Journal of the Mechanics and Physics of Solids, 11, 357-372
  • 22. Ilic S., Hackl K., 2009, Application of the multiscale FEM to the modeling of nonlinear multiphase materials, Journal of Theoretical and Appllied Mechanics, 47, 3, 537-551
  • 23. Kennedy J., Eberhart R., 2001, Swarm Intelligence, Morgan Kaufmann, San Francisco
  • 24. Kouznetsova V., 2002, Computational homogenization for the multi-scale analysis of multi-phase materials, Ph.D. thesis, Technische Universiteit Eindhoven
  • 25. Kroner E. ¨ , 1972, Statistical Continuum Mechanics, Springer, Berlin
  • 26. Kuczma M., 2014, Two-scale numerical homogenization of the constitutive parameters of reactive powder concrete, International Journal for Multiscale Computational Engineering, 2, 5, 361-374
  • 27. Laumann M., Zitzler E., Bleuler S., 2004, A tutorial on evolutionary multiobjective optimization, Metaheuristics for multiobjective optimisation, [In:] Lecture Notes in Economics and Mathematical Systems, X. Gandibleux, M. Sevaux, K. Sorensen, V. T’kindt (Edit.), Springer, 3-37
  • 28. Luque M., Ruiz F., Miettinen K., 2011, Global formulation for interactive multiobjective optimization, OR Spectrum, 33, 1, 27-48
  • 29. Madi K., Forest S., Jeulin D., Boussuge M., 2006, Estimating RVE Sizes for 2D/3D Viscoplastic Composite Materials, HAL – CCSD 30. Michalewicz Z., Fogel D., 2004, How to Solve It: Modern Heuristics, Springer Science & Business Media
  • 30. Michalewicz Z., Fogel D., 2004, How to Solve It: Modern Heuristics, Springer Science & Business Media
  • 31. Nemat-Nasser S., Hori M., 1993, Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier, Amsterdam
  • 32. Phelps J.S., Koksalan M., 2003, An interactive evolutionary metaheuristic for multiobjective combinatorial optimization., Management Science, 49, 12, 1726-1738
  • 33. Ptaszny J., Fedeliński P., 2011, Numerical homogenization by using the fast multipole boundary element method, Archives of Civil and Mechanical Engineering, 11, 1, 181-193
  • 34. Takano N., Zako M., 2000, Integrated design of graded microstructures of heterogeneous materials, Archive of Applied Mechanics, 70, 8/9, 585-596
  • 35. Vernerey F.J., Kabiri M., 2014, Adaptive concurrent multiscale model for fracture and crack propagation in heterogeneous media, Computer Methods in Applied Mechanics and Engineering, 276, 566-588
  • 36. Zhoua A., Qu B., Li H., Zhao S., Suganthan P., Zhang Q., 2011, Multiobjective evolutionary algorithms: a survey of the state of the art, Swarm and Evolutionary Computation, 1, 32-49
  • 37. Zienkiewicz O.C., Taylor R.L., 2000, The Finite Element Method, vol. 1-3, Butterworth, Oxford
  • 38. Zitzler E., Thiele L., 1999, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach, IEEE Transactions on Evolutionary Computation, 3, 4, 257-271
  • 39. Zohdi T.I., Wriggers P., 2005, An introduction to computational micromechanics, Lecture Notes in Applied and Computational Mechanics, Springer-Verlag
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bffc83da-02dc-47c3-a8d3-43aeaf158d66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.