Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We introduce a new variant of the tempered stable distribution, named the modified tempered stable (MTS) distribution and we develop a GARCH option pricing model with MTS innovations. This model allows the description of some stylized empirical facts observed in financial markets, such as volatility clustering, skewness, and heavy tails of stock returns. To demonstrate the advantages of the MTS-GARCH model, we present the results of the parameter estimation.
Czasopismo
Rocznik
Tom
Strony
91--117
Opis fizyczny
Bibliogr.20 poz., tab., wykr.
Twórcy
autor
- Department of Statistics, Econometrics and Mathematical Finance, School of Economics and Business Engineering, University of Karlsruhe and KIT, Kollegium am Schloss, Bau II, 20.12, R210, Postfach 6980, D-76128, Karlsruhe, Germany
autor
- Chair of Statistics, Econometrics and Mathematical Finance, School of Economics and Business Engineering, University of Karlsruhe and KIT Kollegium am Schloss, Bau II, 20.12, R210, Postfach 6980, D-76128, Karlsruhe, Germany
- Department of Statistics and Applied Probability, University of California, Santa Barbara, USA
- FinAnalytica Inc
autor
- Department of Mathematics, The Catholic University of Korea, 43-1 Yeokgok 2-dong, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-743, Korea
autor
- Department of Mathematics, Statistics, Computer Science and Applications, University of Bergamo, Via dei Caniana 2, I-24127, Bergamo, Italy
Bibliografia
- [1] L. D. Andrews, Special Functions of Mathematics for Engineers, 2nd edition, Oxford University Press, 1998.
- [2] F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Political Economy 81 (3) (1973), pp. 637-654.
- [3] S. I. Boyarchenko and S. Z. Levendorski˘i, Option pricing for truncated Lévy processes, Int. J. Theor. Appl. Finance 3 (3) (2000), pp. 549-552.
- [4] P. Carr, H. Geman, D. Madan and M. Yor, The fine structure of asset returns: An empirical investigation, J. Business 75 (2) (2002), pp. 305-332.
- [5] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman&Hall / CRC, 2004.
- [6] J.-C. Duan, The GARCH option pricing model, Math. Finance 5 (1) (1995), pp. 13-32.
- [7] J.-C. Duan, P. Ritchken and Z. Sun, Jump starting GARCH: Pricing and hedging options with jumps in returns and volatilities, working paper, University of Toronto and Case Western Reserve University, 2004.
- [8] S. L. Heston and S. Nandi, A closed-form GARCH option valuation model, Rev. Financial Studies 13 (2000), pp. 585-625.
- [9] S. R. Hurst, E. Platen and S. T. Rachev, Option pricing for a logstable asset price model, Math. Comput. Modelling 29 (1999), pp. 105-119.
- [10] Y. S. Kim, The Modified Tempered Stable Processes with Application to Finance, Ph.D. Thesis, Sogang University, 2005.
- [11] I. Koponen, Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process, Phys. Rev. E 52 (1995), pp. 1197-1199.
- [12] B. B. Mandelbrot, New methods in statistical economics, J. Political Economy 71 (1963), pp. 421-440.
- [13] B. B. Mandelbrot, The variation of certain speculatives prices, J. Business 36 (1963), pp. 394-419.
- [14] G. Marsaglia, W. W. Tsang and G. Wang, Evaluating Kolmogorov’s distribution, J. Statist. Software 8 (2003), p. 18.
- [15] C. Menn and S. T. Rachev, A GARCH option pricing model with ®-stable innovations, European J. Oper. Res. 163 (2005), pp. 201-209.
- [16] C. Menn and S. T. Rachev, Smoothly truncated stable distributions; GARCHmodels ; and option pricing, Technical report, 2005 (http://www.statistik.uni-karlsruhe.de/technical_reports/sts-option.pdf).
- [17] J. Rosiński, Tempering stable processes, Stochastic Process. Appl. 117 (6) (2007), pp. 677-707.
- [18] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes, Chapman & Hall / CRC, 1994.
- [19] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999.
- [20] Gy. Terdik and W. A. Woyczyński, Rosiński measures for tempered stable and related Ornstein-Uhlenbeck processes, Probab. Math. Statist. 26 (2006), pp. 213-243.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bff6aef1-0961-473d-bdc9-de588157ae54