PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fixed point theorems for Kannan type mappings in 2-menger spaces

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we show that the results of Choudhary and Das [2] hold under more general situation.
Rocznik
Tom
Strony
97--115
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
autor
  • Department of Mathematics Maharishi Markandeshwar University Mullana, Ambala, Haryana, India
autor
  • Department of Mathematics B.M. Institute of Engineering and Technology Sonipat, Haryana, India
autor
  • Department of Mathematics D.C.R. University of Science and Technology Murthal, Sonipat, Haryana, India
Bibliografia
  • [1] Aamri M., Moutawakil D. El, Some new common fixed point theorems under Strict contractive conditions, J. Math. Anal. Appl., 27(2002), 181-188.
  • [2] Choudhary B.S., Das K.P., A fixed point theorem for Kannan type mappings in 2-Menger space using a control function, Bull. of Mathematical Analysis and Appl., 3(2011), 141-148.
  • [3] Choudhary B.S., Das K.P., A new contraction principle in Menger spaces, Acta Mathematica Sinica, (English), 24(2008), 1379-1386.
  • [4] Choudhary B.S., Dutta P.N., Das K.P., A fixed point result in Menger spaces using a real function, Acta Math. Hunger, 122(2008), 203-216.
  • [5] Choudhary B.S., Das K.P., A coincidence point result in Menger spaces using a control function, Chaos, Solitons and Fractals, 42(2009), 3058-3063.
  • [6] Choudhary B.S., Das K.P., Fixed points of generalised Kannan type mappings in generalised Menger spaces, Commun, Korean Math. Soc., 24(2009), 529-537.
  • [7] Shi-Sen C., Nan-Jing H., On the generalized 2-metric spaces and probabilistic 2-metric spaces with applications to fixed point theory, Math. Japon, 34(1989), 885-900.
  • [8] Zikic D.T., Fixed Point Theorems for Contractive Mappings in Menger Probabilistic Metric Spaces, L. Magdalena, M.Ojeda-Aciego, J.L. Verdegy (eds): Proceeding of IPMU'.
  • [9] Fang J.X., Gao Y., Common fixed point theorems under strict contractive conditions in Menger spaces, Nonlinear Analysis (TMA), 70(1)(2009), 184-193.
  • [10] Gahler S., 2-metrische Raume und ihre topologische struktur, Math. Nachr., 26(1963), 115-148.
  • [11] Hadzic O., On common fixed point theorems in 2-metric spaces, Univ. Novom Sadu Zb. Rad. Prirod. Mat. Fak. Mat., 12(1982), 7-18.
  • [12] Hadzic O., Some theorems on the fixed point in probabilistic metric and random normed spaces, Bull. Unione Mat. Ital., 6(1-B)(1982), 381-391.
  • [13] Hadzic O., Some theorems for multivalued mappings in some classes of fuzzy metric spaces, Fuzzy Sets and Systems, 29(1989), 115-124.
  • [14] Hadzic O., A fixed point theorems for multivalued mappings in 2-Menger spaces, Univ. u Novom Sadu, Zb. Rad. Prirod. Mat. Fak., Ser. Mat., 24(1994), 1-7.
  • [15] Hadzic O., A fixed point theorem in menger spaces, Publ. Inst. Math. Beograd, 20(1979), 107-112.
  • [16] Hadzic O., Pap E., Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, Dordrechi, 2001.
  • [17] Imdad M., Ali J., Jungck's common fixed point theorem and E.A. property, Acta Mathematica Sinica, 24(2008), 87-94.
  • [18] Imdad M., Ali J., Jungck common fixed point theorems in fuzzy metric spaces, Mathematical Communication, 11(2006), 153-163.
  • [19] Iseki K., Sharma P.L., Sharma B.K., Contraction type mappings on 2-metric spaces, Math. Japon., 21(1976), 67-70.
  • [20] Jungck G., Rhoades B.E., Fixed points for set valued functions without continuity, Indian Journal of Pure and Applied Mathematics, 29(3)(1998), 227-238.
  • [21] Kohli J.K., Vashistha S., Common fixed point theorems in probabilistic metric spaces, Acta Mathematica Hungarica, 115(1-2)(2007), 37-47.
  • [22] Kikkawa M., Suzki T., Some similarity between contractions and Kannan mappings, Fixed Point Theory and Applications, 2008 (2008), Article ID 649749.
  • [23] Khan M.S., Swaleh M., Sessa S., Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30(1984), 1-9.
  • [24] Kada O., Suzki T., Takaashi W., Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japanica, 44(1996), 381-391.
  • [25] Kannan R., Some results on fixed point, Bull. Cat. Math. Soc., 60(1968), 71-76.
  • [26] Kannan R., Some results on fixed point II, Amer, Math. Monthly, 76(1969), 405-408.
  • [27] Kumar S., Fixed point theorems for weakly compatible maps under E.A. property in Fuzzy metric spaces, J. Appl. Math. and Informatics, 29(1-2) (2011), 395-405.
  • [28] Kumar S., Asha R., Some common fixed point theorems in Menger pace, Applied Mathematics, 3(2012), 235-245 doi:10.436/am. 2012.33038 Published Online March 2012 (http:/www.SciRP.org/journal/am).
  • [29] Mihet D., A note on a fixed point theorem in Menger probabilistic quasi-metric spaces, Chaos, Solitons and Fractals, 40(5)(2009), 2349-2352.
  • [30] Mihet D., Imdad M., Common fixed point theorems of integral type in Menger PM spaces, J. Nonlinear Anal. Optim., 3(1)(2012), 55-66.
  • [31] Naidu S.V.R., Some fixed point theorems in metric and 2-metric spaces, Int. J. Math. Sci., 28(11)(2001), 625-638.
  • [32] Pachpatte B.G., Fixed point theorems for contraction type mappings on 2-metric space, Proc. Nat. Acad. Sci. India, Sect. A, 48(1978), 94-102.
  • [33] Pant V., Some fixed point theorems in fuzzy metric spaces, Tamkang Journal of Mathematics, 40(2009), 59-66.
  • [34] Pathak H.K., Cho Y.J., Kang S.M., Remarks on R-weakly commuting mappings and common fixed point theorems, Bulletin of Korean Mathematical Society, 34(2)(1997), 247-257.
  • [35] Radu V., Some fixed point theorems in probabilistic metric spaces, Lecture Notes in Math, 1233, 125-133.
  • [36] Radu V., Lectures on probabilistic analysis, surveys, lecture notes and series on probability, statistical and applied mathematics. Universitates din Timisoara, Timisoara, 2(1994).
  • [37] Rhoades B.E., Contraction type mapping on 2-metric spaces, Math. Nachr, 91(1979), 151-155.
  • [38] Sastry K.P.R., Babu G.V.R., Some fixed point theorems by altering distances between the points, Indian J. Pure. Appl. Math., 30(6)(1999), 641-647.
  • [39] Sastry K.P.R., Naidu S.V.R., Babu G.V.R., Naidu G.A., Generalization of common fixed point theorems for weakly commuting maps by altering distances, Tamkang Journal of Mathematics, 31(3)(2000), 243-250.
  • [40] Subrahmanyan P.V., Completeness and fixed points, Monatsh. Math., 80(1975), 325-330.
  • [41] Saha P.K., Tiwari R., An alternative proof of Kannan's fixed point theorem in generalised metric spaces, News Bull. Cal. Math. Soc., 31(2008), 15-18.
  • [42] Singh S.L., Tivari R., Gupta B.M.L., Common fixed point of commuting mappings in 2-metric spaces and applications, Math. Nachr., 95(1980), 293-297.
  • [43] Schweizer B., Sklar A., Probabilistic Metric Spaces, Elsevier North-Holland, 1983.
  • [44] Sehgal V.M., Bharucha-Reid T., Fixed points of contraction mappings in probabilistic metric spaces, Math. Systems Theory, 6(1972), 97-102.
  • [45] Singh S.L., T. Rekha, Z. Wen-Zhi, Common fixed point theorems in 2-Men-ger spaces and applications, Math. Student, 63(1994), 74-80.
  • [46] Sintunavarat W., Kumam P., Common fixed point theorems for a pair of weakly Compatible mappings in fuzzy metric spaces, Journal of Applied Mathematics, 2011 (2011), Article ID 637958, 14 pages.
  • [47] Shi Y., Ren L., Wang X., The extension of fixed point theorems for set valued mappings, J. Appl.Math. Computing, 13(2003), 277-286.
  • [48] Zeng W., Probabilistic 2-metric spaces, J. Math. Research Expo, 2(1987), 241-245.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bff66a3f-09da-4756-b4c3-ca8ad691b118
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.