PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of effective properties of materials by using the boundary element method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work different formulations of the boundary element method (BEM) in an analysis of materials with inclusions are presented. Models of composites in the form of linear-elastic solids containing rigid inclusions, elasto-plastic composites and piezomagnetic composites are considered. It is assumed that perfectly bonded matrix and inclusions are made of homogeneous materials. The developed computer codes are used to compute effective material properties by considering unit cells or representative volume elements (RVE). The influence of volume fractions of inclusions on overall properties of materials is studied.
Rocznik
Strony
19--35
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Institute of Computational Mechanics and Engineering Silesian University of Technology Konarskiego 18A 44-100 Gliwice, Poland
autor
  • Institute of Computational Mechanics and Engineering Silesian University of Technology Konarskiego 18A 44-100 Gliwice, Poland
autor
  • Institute of Computational Mechanics and Engineering Silesian University of Technology Konarskiego 18A 44-100 Gliwice, Poland
  • Institute of Computational Mechanics and Engineering Silesian University of Technology Konarskiego 18A 44-100 Gliwice, Poland
autor
  • Institute of Computational Mechanics and Engineering Silesian University of Technology Konarskiego 18A 44-100 Gliwice, Poland
Bibliografia
  • 1. G.W. Milton, The Theory of Composites, Cambridge University Press, Cambridge, 2004.
  • 2. S. Nemat-Nasser, M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier, Amsterdam, 1999.
  • 3. J. Qu, M. Cherkaoui, Fundamentals of Micromechanics of Solids, John Wiley & Sons, Inc., Hoboken, New Jersey, 2006.
  • 4. M. Ostoja-Starzewski, Microstructural Randomness and Scaling in Mechanics of Materials, Chapman & Hall/CRC Press, Boca Raton-London-New York, 2008.
  • 5. M. Kamiński, Boundary element method homogenization of the periodic linear elastic composites, Engineering Analysis with Boundary Elements, 23, 815–823, 1999.
  • 6. C.Y. Dong, The integral equation formulations of an infinite elastic medium containing inclusions, cracks and rigid lines, Engineering Fracture Mechanics, 75, 3952–3965, 2008.
  • 7. Y.J. Liu, N. Nishimura, Y. Otani, Large-scale modeling of carbon-nanotube composites by fast multipole boundary element method, Computational Materials Science, 34, 173–187, 2005.
  • 8. Y.J. Liu, N. Nishimura, Y. Otani, T. Takahashi, X.L. Chen, H. Munakata, A fast boundary element method for the analysis of fiber-reinforced composites based on a rigidinclusion model, Journal of Applied Mechanics, 72, 115–128, 2005.
  • 9. S. Ghosh, S. Moorthy, Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method, Computer Methods in Applied Mechanics and Engineering, 121, 373–409, 1995.
  • 10. K. Lee, S. Ghosh, A microstructure based numerical method for constitutive modeling of composite and porous materials, Materials Science and Engineering, A272, 120–133, 1999.
  • 11. J. Lee, J.G. Boyd, D.C. Lagoudas, Effective properties of three-phase electro-magnetoelastic composites, International Journal of Engineering Science, 43, 790–825, 2005.
  • 12. Q.-H. Qin, Micromechanics-BE solution for properties of piezoelectric materials with defects, Engineering Analysis with Boundary Elements, 28, 809–814, 2004.
  • 13. Q.-H. Qin, Material properties of piezoelectric composites by BEM and homogenization method, Composite Structures, 66, 295–299, 2004.
  • 14. H. Wang, G. Tan, S. Cen, Z. Yao, Numerical determination of effective properties of voided piezoelectric materials using BNM, Engineering Analysis with Boundary Elements, 29, 636–646, 2004.
  • 15. P. Fedeliński [Ed.], Advanced Computer Modelling in Micromechanics, Monografia, Nr 427, Wydawnictwo Politechniki Śląskiej, Gliwice, 2013.
  • 16. P. Fedeliński, R. Górski, G. Dziatkiewicz, J. Ptaszny, Computer modelling and analysis of effective properties of composites, Computer Methods in Materials Science, 11, 3–8, 2011.
  • 17. J. Ptaszny, P. Fedeliński, Numerical homogenization of polymer/clay nanocomposites by the boundary element method, Archives of Mechanics, 63, 517–532, 2011.
  • 18. R. Górski, Elastic properties of composites reinforced by wavy carbon nanotubes, Mechanics and Control, 30, 203–212, 2011.
  • 19. P. Fedeliński, Computer modeling and analysis of microstructures with fibres and cracks, Journal of Achievements in Materials and Manufacturing Engineering, 54, 242–249, 2012.
  • 20. P. Fedeliński, Analysis of representative volume elements with random microcracks, Chapter 17, Computational Modelling and Advanced Simulation, J. Murin et al. [ed.], Computational Methods in Applied Sciences, 24, Springer Science+Business Media B.V., 333–341, 2011.
  • 21. G. Dziatkiewicz, Analysis of effective properties of piezocomposites by the subregion BEM-Mori-Tanaka approach, Mechanics and Control, 30, 194–202, 2011.
  • 22. X.W. Gao, T.G. Davies, Boundary Element Programming in Mechanics, Cambridge University Press, Cambridge, 2002.
  • 23. E.A. Pan, BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids, Engineering Analysis Boundary Elements, 23, 67–76, 1999.
  • 24. J.Y. Li, Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials, International Journal of Engineering Science, 38, 1993–2011, 2000.
  • 25. J.J. Telega, A. Gałka, B. Gambin, Effective properties of physically nonlinear piezoelectric composites, Archives of Mechanics, 50, 321–340, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bff49bbb-0760-42de-a719-fb4c358dff85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.