PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical implementation of finite strain elasto-plasticity without yield surface

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, the finite element (FE) implementation of elasto-plasticity without a yield surface is discussed. For that purpose, the method of perturbing the deformation gradient tensor is employed to calculate approximate tangent moduli. The development of a user subroutine that enables one to use the proposed model within the FE program ABAQUS is covered. A number of exemplary numerical simulations is conducted in order to check the performance of this subroutine. Material parameter values determined for different materials are utilized. Finally, the presented constitutive equation is examined upon its ability to capture the shear-softening process.
Słowa kluczowe
Rocznik
Strony
1113--1126
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Life Sciences, Department of Fundamental Engineering, Warsaw, Poland
Bibliografia
  • 1. Alkas Yonan S., Soyarslan C., Haupt P., Kwiatkowski L., Tekkaya A.E., 2013, A simple finite strain non-linear visco-plastic model for thermoplastics and its application to the simulation of incremental cold forming of polyvinylchloride (PVC), International Journal of Mechanical Sciences, 66, 192-201
  • 2. Doll S., Schweizerhof K., 2000, On the development of vlumetric strain energy functions, Journal of Applied Mechanics, 67, 17-21
  • 3. Hibbit B., Karlsson B., Sorensen P., 2008, ABAQUS Theory Manual, Hibbit, Karlsson & Sorensen Inc.
  • 4. Holzapfel G.A., 2010, Nonlinear Solid Mechanics, John Wiley & Sons Ltd., New York
  • 5. Kastner M., Obst M., Brummund J., Thielsch K., Ulbricht V. , 2012, Inelastic material behavior of polymers – Experimental characterization, formulation and implementation of a material model, Mechanics of Materials, 52, 40-57
  • 6. Knowles J. K., 1977, The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids, International Journal of Fracture, 13, 5, 611-639
  • 7. Kowalewski Z.L., Szymczak T., 2009, Variation of mechanical parameters of engineering materials under tension due to cyclic deformation by torsion, Engineering Transactions, 57, 113-123
  • 8. Kozłowska B., 2011, Experimental strain and stress analysis in the process of formation and evolution of elastic-plastic zones in construtions (in Polish), Scientific Surveys of Warsaw University of Technology, Mechanics, 239
  • 9. Lee C.F., 1995, Recent finite element applications of the incremental endochronic plasticity, International Journal of Plasticity, 11, 843-865
  • 10. Miehe C., 1996, Numerical computation of alghoritmic (consistent) tangent moduli in large-strain computational inelasticity, Computer Methods in Applied Mechanics and Engineering, 134, 223-240
  • 11. Olesiak Z., 1975, On Huber-Mises yield condition (in Polish), Mechanika Teoretyczna i Stosowana, 13, 523-528
  • 12. Pipkin A.C., Rivlin R.S., 1965, Mechanics of rate-independent materials, ZAMP, 16, 313-327
  • 13. Simo J.C., Hughes T.J.R., 2000, Computational Inelasticity, Springer Verlag Inc., New York
  • 14. Suchocki C., 2015, An internal-state-variable based viscoelastic-plastic model for polymers, Journal of Theoretical and Applied Mechanics, 53, 593-604
  • 15. Suchocki C., Skoczylas P., 2016, Finite strain formulation of elasto-plasticity without yield surface: theory, parameter identification and applications, Journal of Theoretical and Applied Mechanics, 54, 731-742
  • 16. Sun W., Chaikof E.L., Levenston M.E., 2008, Numerical approximation of tangent moduli for finite element implementations of nonlinear hyperelastic material models, Journal of Biomechanical Engineering, 130, 061003-1 – 061003-7
  • 17. Sussman T., Bathe K.J., 1987, A finite element formulation for nonlinear incompressible hyperelastic and inelastic analysis, Computers and Structures, 26, 357-409
  • 18. Valanis K.C., 1971a, A theory of viscoplasticity without a yield surface, Part I: General theory, Archives of Mechanics, 23, 517-534
  • 19. Valanis K.C., 1971b, A theory of viscoplasticity without a yield surface, Part II: Application to mechanical behavior of metals, Archives of Mechanics, 23, 535-551
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfee8d03-e7bc-48bf-9112-c119b8f3ef6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.