Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the effect of the emergence angle of a source array on acoustic transmission in a typical shallow sea is simulated and analyzed. The formula we derived for the received signal based on the Normal Mode indicates that the signal is determined by the beamform on the modes of all sources and the samplings of all modes at the receiving depth. Two characteristics of the optimal emergence angle (OEA) are obtained and explained utilizing the aforementioned derived formula. The observed distributions of transmission loss (TL) for different sources and receivers are consistent with the obtained characteristics. The results of this study are valuable for the development and design of active sonar detection.
Wydawca
Czasopismo
Rocznik
Tom
Strony
3--9
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
autor
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, 710072, China
- Key Laboratory of Ocean Acoustics and Sensing (Northwestern Polytechnical University), Ministry of Industry and Information Technology, Xi’an, 710072, China
autor
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, 710072, China
- Key Laboratory of Ocean Acoustics and Sensing (Northwestern Polytechnical University), Ministry of Industry and Information Technology, Xi’an, 710072, China
autor
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, 710072, China
- Key Laboratory of Ocean Acoustics and Sensing (Northwestern Polytechnical University), Ministry of Industry and Information Technology, Xi’an, 710072, China
autor
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, 710072, China
- Key Laboratory of Ocean Acoustics and Sensing (Northwestern Polytechnical University), Ministry of Industry and Information Technology, Xi’an, 710072, China
Bibliografia
- 1. Bogart C. W., Yang T. C. (1994), Source localization with horizontal arrays in shallow water: Spatial sampling and effective aperture, Journal of the Acoustical Society of America, 96 (3): 1677-1686, doi: 10.1121/1.410247.
- 2. Cable P. G. (2006), A method to predict active sonar detection range in uncertain shallow water environments, Journal of the Acoustical Society of America, 119 (5): 3426, doi: 10.1121/1.4786870.
- 3. Cohen J. S., Cole B. F. (1977), Shallow-water propagation under downward-refraction conditions. II, Journal of the Acoustical Society of America, 61 (1): 213-217, doi: 10.1121/1.381259.
- 4. Cole B. F., Podeszwa E. M. (1967), Shallow-water propagation under downward-refraction conditions, Journal of the Acoustical Society of America, 41 (6): 1479-1484, doi: 10.1121/1.1910510.
- 5. Duan R., Yang K., Ma Y. (2012), Research on reliable acoustic path: Physical properties and a source localization method, Chinese Physics B, 21 (12): 276-289, doi: 10.1088/1674-1056/21/12/124301.
- 6. Duan R., Yang K., Ma Y., Yang Q., Li H. (2014), Moving source localization with a single hydrophone using multipath time delays in the deep ocean, Journal of the Acoustical Society of America, 136 (2): 159-165, doi: 10.1121/1.4890664.
- 7. Hale F. E. (1961), Long-range sound propagation in the deep ocean, Journal of the Acoustical Society of America, 33 (4): 456-464, doi: 10.1121/1.1908691.
- 8. Hall M. (1975), Studies of sound transmission in the ocean mixed layers, Journal of the Acoustical Society of America, 57 (S1): S63-S63, doi: 10.1121/1.1995349.
- 9. He C., Yang K., Lei B., Ma Y. (2015), Forward scattering detection of a submerged moving target based on the adaptive filtering technique, Journal of Acoustical Society of America, 138 (3): 293-298, doi: 10.1121/1.4929807.
- 10. He C., Yang K., Ma Y. (2016), Analysis of the arriving-angle structure of the forward scattered wave on a vertical array in shallow water, Journal of the Acoustical Society of America, 140 (3): 256-262, doi: 10.1121/1.4962338.
- 11. Herstein P. D., Cole B. F., Browning D. G., Groneman F. L. (2006), Sensitivity of shallow water transmission loss to source and receiver proximity to a hard bottom under downward refracting conditions, Journal of the Acoustical Society of America, 92 (4): 2302, doi: 10.1121/1.405129.
- 12. Jensen F. B., William A. Kuperman W. A., Porter M. B, Schmidt H. (2011), Computational ocean acoustics, Springer Science & Business Media, doi: 10.1007/978-1-4419-8678-8.
- 13. Katsnelson B. G, Petnikov V. G, Lynch J. F. (2001), Shallow Water Acoustics, Journal of the Acoustical Society of America, 112 (6): 2502-2504, doi: 10.1121/1.1518696.
- 14. Lei B., Yang K., Ma Y. (2012), Range estimation for forward scattering of an underwater object with experimental verification, Journal of Acoustical Society of America, 132 (4): 284-289, doi: 10.1121/1.4747273.
- 15. Lei B., Yang K., Ma Y. (2014), Forward scattering detection of a submerged object by a vertical hydrophone array, Journal of the Acoustical Society of America, 136 (6): 2998-3007, doi: 10.1121/1.4901709.
- 16. Lei Z., Yang K., Ma Y. (2016), Passive localization in the deep ocean based on the cross-correlation function matching, Journal of the Acoustical Society of America, 139 (6): 196-201, doi: 10.1121/1.4954053.
- 17. Sheng X., Lu J., Dong W., Yin J., Guo L., Wu X. (2014), The research on the coverage area of multistatic sonar in various working modes, Proceedings of Meetings on Acoustics, 21 (1): 070005, doi: 10.1121/1.4890017.
- 18. Urick R. J. (1965), Caustics and convergence zones in deep-water sound transmission, Acoustical Society of America Journal, 38 (2): 1191, doi: 10.1121/1.1939471.
- 19. Xia H., Yang K., Ma Y. (2016), Noise reduction method for acoustic sensor arrays in underwater noise, IEEE Sensors Journal, 16 (24): 8972-8981, doi: 10.1109/JSEN.2016.2618770.
- 20. Xiao P., Yang K. (2016), Model of shipping noise in the deep water: directional density and spatial coherence functions, China Ocean Engineering, 30 (4): 591-601, doi: 10.1007/s13344-016-0037-3.
- 21. Yang K., Li H., Duan R., Yang Q. (2017), Analysis on the characteristic of cross-correlated field and its potential application on source localization in deep water, Journal of Computational Acoustics, 25 (2): S1, doi: 10.1142/S0218396X17500011.
- 22. Yang K., Li H., He C., Duan R. (2016), Error analysis on bearing estimation of a towed array to a farfield source in deep water, Acoustics Australia, 44 (3): 429-437, doi: 10.1007/s40857-016-0070-7.
- 23. Yang K., Lu Y., Lei Z., Xia H. (2017), Passive localization based on multipath time-delay difference with two hydrophones in deep ocean, Acoustics Australia, 45 (4): 1-10, doi: 10.1007/s40857-017-0084-9.
- 24. Yang K., Ma Y., Sun C., Miller J. H., Potty G. R. (2004), Multi-step matched field inversion for broadband data from ASIAEX2001, IEEE Journal of Oceanic Engineering, 29 (4): 964-972, doi: 10.1109/JOE.2004.835211.
- 25. Yang K., Ross C., Ma Y. (2007), Estimating parameter uncertainties in Geoacoustic inversion by a neighbourhood algorithm, Journal of Acoustical Society of America, 121 (2): 833-843, doi: 10.1109/OCEANS.2006.306799.
- 26. Yang K., Yang Q., Duan R., Guo X., Cao R. (2016), A simple method for source depth estimation with multipath time delay in the deep ocean, Chinese Physics Letters, 33 (12): 124302, doi: 10.1088/0256-307X/33/12/124302.
- 27. Zhang T., Yang K., Ma Y., Wang Y. (2015), A robust localization method for source localization based on the auto-correlation function of wideband signal, Acta Physica Sinica, 64 (2): 276-282, doi: 10.7498/aps.64.024303.
- 28. Zhang Z. Y. (2016), Analytical formulas for incoherent transmission loss in shallow water based on effective approximations of seafloor depth and reflectivity, Journal of the Acoustical Society of America, 140, 3407, doi: 10.1121/1.4970942.
- 29. Zhao K., Liang J., Karlsson J., Li J. (2013), Enhanced multistatic active sonar signal processing, Journal of the Acoustical Society of America, 134 (1): 300-311, doi: 10.1121/1.4809648.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfedf767-d15b-46b8-873a-ef4d5f450846