Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Background: Production systems often face challenges that impact efficiency, productivity, and overall performance. Various approaches and techniques are employed to address these issues. This study examines the practical application of process mining and simulation modeling to resolve problems in production systems, with a focus on optimizing the event log data recorded by computer-assisted production processes. Process mining analyzes this data to reveal actual workflows, while simulation modeling explores design alternatives and predicts future performance issues. This study provides a comprehensive review of process mining and simulation modeling integration, offering insights into how these methods improve system performance in production environments. Methods: This research implements bibliometric analysis and a systematic literature review based on a systematic mapping approach. In accordance with PRISMA guidelines and the inclusion and exclusion criteria, 59 articles were deemed eligible for bibliometric analysis, with 53 selected for the literature review. Results: Bibliometric analysis indicates that current publication trends focus on simulation, particularly discrete event simulation, with an emphasis on production systems, simulation models, and production control. The literature review reveals that process mining and simulation modeling address various issues, including system flexibility and reliability, data compatibility and synchronization, product quality monitoring, asset maintenance, cycle time prediction, resource bottleneck management, capacity allocation, productivity, machine downtime, process design, waste utilization, carbon emission prediction, and energy efficiency. Discrete event simulation is the most commonly used approach in process mining for production systems. Existing research in this area often addresses problems with limited improvement potential rather than large-scale challenges, particularly in process investigation, digital process modeling, validation and verification, production operation optimization, predictive analysis, assessment and management, continuous enhancement, and decision support. Conclusions: Integrating process mining with simulation modeling helps production systems tackle operational challenges, optimize performance, and improve decision-making. This approach provides valuable insights for managing complex environments and enhances scheduling, resource management, and sustainability.
Wydawca
Czasopismo
Rocznik
Tom
Strony
429--453
Opis fizyczny
Bibliogr. 134 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia
- Department of Informatics, Universitas Sarjanawiyata Tamansiswa, Yogyakarta, Indonesia
autor
- Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia
autor
- Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia
autor
- School of Vocational, Universitas Gadjah Mada, Sleman, Indonesia
Bibliografia
- 1. Abohamad W., Ramy A., Arisha A., 2017, A hybrid process-mining approach for simulation modeling, In: Proceedings of 2017 Winter Simulation Conference (WSC), Las Vegas, NV, USA, pp. 1527-1538. https://www.doi.org/10.1109/WSC.2017.8247894
- 2. Aguilar M.J.R., Cardiel I.A., Somolinos J.A.C., 2024, IIoT System for Intelligent Detection of Bottleneck in Manufacturing Lines, Appl. Sci. 14, 323. https://www.doi.org/10.3390/app14010323
- 3. Aguirre S., Parra C., Alvarado J., 2013, Combination of Process Mining and Simulation Techniques for Business Process Redesign: A Methodological Approach, In: Cudre-Mauroux, P., Ceravolo, P., Gašević, D. (eds) Data-Driven Process Discovery and Analysis, Lecture Notes in Business Information Processing, vol 162. Springer, Berlin, Heidelberg. https://www.doi.org//10.1007/978-3-642-40919-6_2
- 4. Al Hazza M.H.F., Ali M.Y., Razif N.F.M., 2021, Performance Improvement Using Analytical Hierarchy Process and Overall Equipment Effectiveness (OEE): Case Study, Journal of Engineering Science and Technology vol. 16 no. 3, 2227 – 2244.
- 5. Amare T., Singh B., Kabata G., Bhaskaran J., 2021, Improvement Analysis of Production Planning and Control System, Industrial Engineering & Management vol. 10:3.
- 6. Aslan A., El-Raoui H., Hanson J., Vasantha G., Quigley J., Corney J., Sherlock A., 2023, Using Worker Position Data for Human-Driven Decision Support in Labour-Intensive Manufacturing, Sensors 23, 4928. https://www.doi.org/10.3390/s23104928
- 7. Bendouch M.M., Frasincar F., Robal T., 2021, Addressing Scalability Issues in Semantics-Driven Recommender Systems, in: WI-IAT ’21, December 14–17, 2021, ESSENDON, VIC, Australia. https://www.doi.org/10.1145/3486622.3493963
- 8.\ Berk A., İnanç Güney O., Sangün L., 2022, Measurement of resource use efficiency in corn production: a two-stage data envelopment analysis approach in Turkey, Ciência Rural vol. 52, no. 10. https://www.doi.org/10.1590/0103-8478cr20210022
- 9. Bestmann T.D., Odukwe A.O., Agwunwamba J.C., Orima K., 2021, Minimizing Equipment Downtime by Adopting Basic Math Model to Improve Electric Power Production in Nigeria, International Journal of Advances in Engineering and Management (IJAEM) vol. 3 issue 11, 702-714. https://www.doi.org/10.35629/5252-0311702714
- 10. Bhogal R., Garg A., 2020, Anomaly Detection and Fault Prediction of Breakdown to Repair Process Using Mining Techniques, In: 2020 International Conference on Intelligent Engineering and Management (ICIEM), London, UK, pp. 240-245. https://www.doi.org/10.1109/ICIEM48762.2020.9160012
- 11. Bhosale K.C., Pawar P.J., 2020, Production planning and scheduling problem of continuous parallel lines with demand uncertainty and different production capacities, Journal of Computational Design and Engineering vol. 7 issue 6, 761–774. https://www.doi.org/10.1093/jcde/qwaa055
- 12. Bindzar P., Saderova J., Sofranko M., Kacmary P., Brodny J., Tutak M.A., 2021, Case Study: Simulation Traffic Model as a Tool to Assess One-Way vs. Two-Way Traffic on Urban Roads around the City Center, Appl. Sci. 11, 5018. https://www.doi.org/10.3390/app11115018
- 13. Birk A., Wilhelm Y., Dreher S., Flack C., Reimann P., Gr¨oger C., 2021, A Real-World Application of Process Mining for Data-Driven Analysis of Multi-Level Interlinked Manufacturing Processes, 54th CIRP Conference on Manufacturing Systems, Procedia CIRP 00, 000–000.
- 14. Birta L.G., Arbez G., 2019, Modelling and simulation: exploring dynamic system behaviour, 3rd edn. Springer International Publishing, New York.
- 15. Boyandinova A., Adilkhanova Z., 2020, An Information Support For Management System of Technological Process At Open Pits, In Proceedings of 20th International Multidisciplinary Scientific GeoConference SGEM 2020. https://www.doi.org/10.5593/sgem2020/2.1/s08.057
- 16. Bussacarini M.V.P., Sagawa J.K., Longo F., et al., 2023, Reduction of variability in a smart shop floor using discrete event simulation, Int J Adv Manuf Technol 128, 1829–1844. https://www.doi.org/10.1007/s00170-023-11934-9
- 17. Cabezas-Fulca D., Muelle-Macchiavello I., 2022, Implementation of Lean Manufacturing to Increase the Machine’s Availability of a Metalworking Company, in: Proceedings of the 7th North American International Conference on Industrial Engineering and Operations Management, Orlando, Florida, USA, June 12-14, 2022.
- 18. Cajal-Grossi J., Del Prete D., Macchiavello R., 2023, Supply chain disruptions and sourcing strategies, International Journal of Industrial Organization vol. 90, 103004. https://www.doi.org/10.1016/j.ijindorg.2023.103004
- 19. Camargo M., Báron D., Dumas M., González-Rojas O., 2023, Learning business process simulation models: A Hybrid process mining and deep learning approach, Information Systems, vol. 117, 102248. https://www.doi.org/10.1016/j.is.2023.102248
- 20. Cerqueus A., Delorme X., 2023, Evaluating the scalability of reconfigurable manufacturing systems at the design phase, International Journal of Production Research, 61(23), 8080–8093. https://www.doi.org/10.1080/00207543.2022.2164374
- 21. Chen C., Lee Kong T., Kan W., 2023, Identifying the promising production planning and scheduling method for manufacturing in Industry 4.0: a literature review, Production & Manufacturing Research 11(1). https://www.doi.org/10.1080/21693277.2023.2279329
- 22. Chinnathai M.K., Alkan B., 2023, A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries, Journal of Cleaner Production 419, 138259. https://www.doi.org/10.1016/j.jclepro.2023.138259
- 23. Chiò E., Alfieri A., Pastore E., 2021, Change-point visualization and variation analysis in a simple production line: a process mining application in manufacturing, Procedia CIRP 99, 573–579. https://www.doi.org/10.1016/j.procir.2021.03.122
- 24. Cho M., Park G., Song M., Lee J., Kum E., 2021, Quality-Aware Resource Model Discovery, Appl. Sci. 11, 5730. https://www.doi.org/10.3390/app11125730
- 25. Choueiri A.C., Sato D.M.V., Scalabrin E.E., Santos E.A.P., 2020, An extended model for remaining time prediction in manufacturing systems using process mining, Journal of Manufacturing Systems 56, 188–201. https://www.doi.org/10.1016/j.jmsy.2020.06.003
- 26. Costantino F., De Nicola A., Di Gravio G., Falegnami A., Patriarca R., Tronci M., Vicoli G., Villani M.L., 2023, Transition from Work-As-Imagined to Work-As-Done Processes Through Semantics: An Application to Industrial Resilience Analysis. In: Archimède, B., Ducq, Y., Young, B., Karray, H. (eds) Enterprise Interoperability IX. I-ESA 2020, Proceedings of the I-ESA Conferences, vol 10. Springer, Cham. https://www.doi.org/10.1007/978-3-030-90387-9_2
- 27. Currie C.S.M., Fowler J.W., Kotiadis K., Monks T., Onggo B.S., Robertson D.A., Tako A.A., 2020, How simulation modelling can help reduce the impact of COVID-19, Journal of Simulation, 14:2, 83-97. https://www.doi.org/10.1080/17477778.2020.1751570
- 28. Dakic D., Sladojevic S., Lolic T., Stefanovic D., 2019, Process Mining Possibilities and Challenges: A Case Study, 2019 IEEE 17th International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, 000161-000166. https://www.doi.org/10.1109/SISY47553.2019.9111591
- 29. de Oliveira A.B., Micosky A.L., dos Santos C.F., de Freitas Rocha Loures E., Santos E.A.P., 2024, A Hybrid Model to Support Decision Making in Manufacturing. In: Silva, F.J.G., Pereira, A.B., Campilho, R.D.S.G. (eds) Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems, FAIM 2023, Lecture Notes in Mechanical Engineering. Springer, Cham. https://www.doi.org/10.1007/978-3-031-38241-3_73
- 30. Dellas S., Ismail A., Ehm H., Hartwick A., 2022, A Tutorial on How to Set Up a System Dynamics Simulation on the Example of Covid-19 Pandemic, 2022 Winter Simulation Conference (WSC), Singapore, pp. 253-267. https://www.doi.org/10.1109/WSC57314.2022.10015369
- 31. Dorrer M., Dorrer A., 2019, Generation of agent simulation models by using process mining methods on the example of E-learning process, J. Phys.: Conf. Ser. 1399, 033077. https://www.doi.org/10.1088/1742-6596/1399/3/033077
- 32. Escudero-Ornelas I.O., Tiwari D., Farnsworth M., Tiwari A., 2023, Modelling interdependencies in an electric motor manufacturing process using discrete event simulation. Journal of Simulation pp. 1–22. https://www.doi.org/10.1080/17477778.2023.2202338
- 33. Fahland D., 2022, Process Mining over Multiple Behavioral Dimensions with Event Knowledge Graphs, In: van der Aalst, W.M.P., Carmona, J. (eds) Process Mining Handbook. Lecture Notes in Business Information Processing, vol 448, Springer, Cham. https://www.doi.org/10.1007/978-3-031-08848-3_9
- 34. Fan Y., Zhang C., Xia L., Dou Z., 2023, Optimization study of hydrogen production system based on peak-valley tariff, in: Proceedings of the 3rd International Conference on Management Science and Software Engineering (ICMSSE) 249-258. https://www.doi.org/10.2991/978-94-6463-262-0_29
- 35. Fonseca i Casas P., 2023, A Continuous Process for Validation, Verification, and Accreditation of Simulation Models, Mathematics 11, 845. https://www.doi.org/10.3390/math11040845
- 36. Fontenla-Seco Y., Lama M., Gonz´alez-Salvado V., Pe˜na-Gil C., Bugarín-Diz A., 2022, A framework for the automatic description of healthcare processes in natural language: Application in an aortic stenosis integrated care process, Journal of Biomedical Informatics 128, 104033. https://www.doi.org/10.1016/j.jbi.2022.104033
- 37. Francis D.P., Lazarova-Molnar S., Mohamed N., 2021, Towards Data-Driven Digital Twins for Smart Manufacturing. In: Selvaraj, H., Chmaj, G., Zydek, D. (eds) Proceedings of the 27th International Conference on Systems Engineering, ICSEng 2020, Lecture Notes in Networks and Systems, vol 182. Springer, Cham. https://www.doi.org/10.1007/978-3-030-65796-3_43
- 38. Friederich J., Lazarova-Molnar S., 2021, Process Mining for Reliability Modeling of Manufacturing Systems with Limited Data Availability, In Proceedings of 2021 8th International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Gandia, Spain, pp. 1-7. https://www.doi.org/10.1109/IOTSMS53705.2021.9704921
- 39. Friederich J., Lazarova-Molnar S., 2022, Data-Driven Reliability Modeling of Smart Manufacturing Systems Using Process Mining, In Proceedings of 2022 Winter Simulation Conference (WSC), Singapore, pp. 2534-2545. https://www.doi.org/10.1109/WSC57314.2022.10015301
- 40. Friederich J., Francis D.P., Lazarova-Molnar S., Mohamed N., 2022a, A framework for data-driven digital twins of smart manufacturing systems, Computers in Industry 136, 103586. https://www.doi.org/10.1016/j.compind.2021.103586
- 41. Friederich J., Lugaresi G., Lazarova-Molnar S., Matta A., 2022b, Process Mining for Dynamic Modeling of Smart Manufacturing Systems: Data Requirements, Procedia CIRP 107, 546–551. https://www.doi.org/10.1016/j.procir.2022.05.023
- 42. Friederich J., Cai W., Gan B.P., Lazarova-Molnar S., 2023, Equipment-centric Data-driven Reliability Assessment of Complex Manufacturing Systems, In Proceedings of the 2023 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, pp. 62-72. https://www.doi.org/10.1145/3573900.3591111
- 43. Giuseppe C., Valerio M., Teresa M., Carmela S.L., 2014, A Simulation Approach in Process Mining Conformance Analysis. The Introduction of a Brand New BPMN Element, IERI Procedia 6, pp. 45–51. https://www.doi.org/10.1016/j.ieri.2014.03.008
- 44. Grijota C.G., Acero R., Yagüe-Fabra J.A., 2021, Product development methodology "scalability", Procedia CIRP vol. 100, pp. 571-576. https://www.doi.org/10.1016/j.procir.2021.05.125
- 45. Grisold T., Wurm B., Mendling J., Vom Brocke J., 2020, Using process mining to support theorizing about change in organizations, In: Proceedings of the 53rd Hawaii International Conference on System Sciences, pp. 5494–5503. https://www.doi.org/10.24251/HICSS.2020.673
- 46. Hoffmann F., Wesskamp V., Bleck R., Deuse J., 2022, Scalability of Assembly Line Automation Based on the Integrated Product Development Approach, in: Schüppstuhl, T., Tracht, K., Raatz, A. (eds) Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021. Springer, Cham. https://www.doi.org/10.1007/978-3-030-74032-0_23
- 47. Horstkemper D., Mülhausen A., Hellingrath B., 2023, Structured Approach for Automated Enterprise Architecture Model Generation, IFAC PapersOnLine 56-2, 3648–3653. https://www.doi.org/10.1016/j.ifacol.2023.10.1528
- 48. Jadrić M., Ninčević Pašalić I., Ćukušić M., 2020, Process Mining Contributions to Discrete-event Simulation Modelling, Business Systems Research, vol. 11, No. 2, pp. 51-72. https://www.doi.org/10.2478/bsrj-2020-0015
- 49. Jašek R., Sedláček M., Chramcov B., Dvořák J., 2016, Application of simulation models for the optimization of business processes, In Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2015 (ICNAAM-2015), American Institute of Physics (AIP). https://www.doi.org/10.1063/1.4951911
- 50. Javadi S.M., Sadjadi S.J., Makui A., 2023, Identification and fixing bottlenecks of a food manufacturing system using a simulation approach, Sci Rep 13, 11786. https://www.doi.org/10.1038/s41598-023-39025-5
- 51. Jordan P., Kroeger S., Streibel L., Vernim S., Zaeh M.F., 2024, Concept for a data-based approach to support decision-making in tactical tasks for planning disassembly systems, Procedia CIRP 122, 288–293. https://www.doi.org/10.1016/j.procir.2024.01.042
- 52. José Ferronato J., Emílio Scalabrin E., 2021, PM2Sim: The Automated Creation of a Simulation Model from Process Mining, in: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC) 17-20 October, 2021. https://www.doi.org/10.1109/SMC52423.2021.9659211
- 53. Kanike U.K., 2023, Factors disrupting supply chain management in manufacturing industries, Journal of Supply Chain Management Science vol. 4, no 1-2. https://www.doi.org/10.18757/jscms.2023.6986
- 54. Kaouni A., Theodoropoulou G., Bousdekis A., Voulodimos A., Miaoulis G., 2021, Visual Analytics in Process Mining for Supporting Business Process Improvement, Frontiers in Artificial Intelligence and Applications, vol. 338, 166–175. https://www.doi.org/10.3233/FAIA210089
- 55. Khosravi S., Haghshenas H., Salehi V., 2020, Macro-Scale Evaluation of Urban Transportation Demand Management Policies in CBD by Using System Dynamics Case Study: Isfahan CBD, Transportation Research Procedia, vol. 48, pp. 2671-2689. https://www.doi.org/10.1016/j.trpro.2020.08.246
- 56. Kim S., Choi Y., Kim S., 2023, Simulation Modeling in Supply Chain Management Research of Ethanol: A Review, Energies 16, 7429. https://www.doi.org/10.3390/en16217429
- 57. Knoch S., Ponpathirkoottam S., Schwartz T., 2020, Video-to-Model: Unsupervised Trace Extraction from Videos for Process Discovery and Conformance Checking in Manual Assembly, In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds) Business Process Management, BPM 2020. Lecture Notes in Computer Science(), vol. 12168. Springer Cham. https://www.doi.org/10.1007/978-3-030-58666-9_17
- 58. Koehler W., Jing Y., 2020, Trace induction for complete manufacturing process model discovery, International Journal Advanced Manufacturing Technology 110, pp. 29–43. https://www.doi.org/10.1007/s00170-020-05747-3
- 59. Kumbhar M., Ng A.H.C., Bandaru S., 2022, Bottleneck Detection Through Data Integration, Process Mining and Factory Physics-Based Analytics, Advances in Transdisciplinary Engineering, vol. 21, 737–748. https://www.doi.org/10.3233/ATDE220192
- 60. Kumbhar M., Ng A.H.C., Bandaru S., 2023, A digital twin based framework for detection, diagnosis, and improvement of throughput bottlenecks, Journal of Manufacturing Systems 66, 92–106. https://www.doi.org/10.1016/j.jmsy.2022.11.016
- 61. Kurscheidt Netto R.J., Loures E. de F.R., dos Santos E., 2021, Enabling the Use of Shop Floor Information for Multi-criteria Decision Making in Maintenance Prediction, In: Tavares Thomé, A.M., Barbastefano, R.G., Scavarda, L.F., Gonçalves dos Reis, J.C., Amorim, M.P.C. (eds) Industrial Engineering and Operations Management. IJCIEOM 2021. Springer Proceedings in Mathematics & Statistics, vol 367. Springer, Cham. https://www.doi.org/10.1007/978-3-030-78570-3_33
- 62.Langer A., Ortmeier C., Martin N.L., Abraham T., Herrmann C., 2021, Combining Process Mining And Simulation In Production Planning, In: Herberger, D.; Hübner, M. (Eds.): Proceedings of the Conference on Production Systems and Logistics : CPSL 2021. Hannover : publish-Ing., S. 264-273. https://www.doi.org/10.15488/11300
- 63. Leyer M., Hüttel S., 2017, Performance Analysis with DEA, Process Mining and Business Process Simulation on a Livestock Process, In: Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS) 2017 Vol II, March 15 - 17, 2017, Hong Kong.
- 64. López Castro L.M., Martínez S.G., Rodriguez N.E., Lovera L.V., Santiago Aguirre H., Jimenez JF., 2021, Development of a Predictive Process Monitoring Methodology in a Self-organized Manufacturing System, In: Trentesaux, D., Borangiu, T., Leitão, P., Jimenez, JF., Montoya-Torres, J.R. (eds) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. SOHOMA 2021. Studies in Computational Intelligence, vol 987. Springer, Cham. https://www.doi.org/10.1007/978-3-030-80906-5_1
- 65. Lugaresi G., Matta A., 2021a, Automated Digital Twins Generation for Manufacturing Systems: A Case Study, IFAC PapersOnLine 54-1, 749–754. https://www.doi.org/10.1016/j.ifacol.2021.08.087
- 66. Lugaresi G., Matta A., 2021b, Discovery and digital model generation for manufacturing systems with assembly operations, In Proceedings of 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE), Lyon, France, pp. 752-757. https://www.doi.org/10.1109/CASE49439.2021.9551479
- 67. Lugaresi G., Matta A., 2021c, Automated manufacturing system discovery and digital twin generation, Journal of Manufacturing Systems 59, 51–66. https://www.doi.org/10.1016/j.jmsy.2021.01.005
- 68. Lugaresi G., Matta A., 2023, Automated digital twin generation of manufacturing systems with complex material flows: graph model completion, Computers in Industry 151, 103977. https://www.doi.org/10.1016/j.compind.2023.103977
- 69. Maier J.B., Gram J., Weisbarth M., Hennebold C., Huber M.F., 2023, Unsupervised Event Abstraction for Automatic Process Modeling of PLC-controlled Automation Systems, Procedia CIRP 120, 631–636. https://www.doi.org/10.1016/j.procir.2023.09.050
- 70. Mallareddy M., Thirumalaikumar R., Balasubramanian P., Naseeruddin R., Nithya N., Mariadoss A., Eazhilkrishna N., Choudhary A.K., Deiveegan M., Subramanian E., et al., 2023, Maximizing Water Use Efficiency in Rice Farming: A Comprehensive Review of Innovative Irrigation Management Technologies, Water 15(10):1802. https://www.doi.org/10.3390/w15101802
- 71. Martin N., 2016, The Use of Process Mining in Business Process Simulation Model Construction - Structuring the Field, Business & Information Systems Engineering, vol. 58, Iss. 1, pp. 73-87. https://www.doi.org/10.1007/s12599-015-0410-4
- 72. Massaro A., 2022, Advanced Control Systems in Industry 5.0 Enabling Process Mining, Sensors 22, 8677. https://www.doi.org/10.3390/s22228677
- 73. May M.C., Neidh¨ofer J., K¨orner T., Sch¨afer L., Lanza G., 2022, Applying Natural Language Processing in Manufacturing, 10th CIRP Global Web Conference–Material Aspects of Manufacturing Processes, Procedia CIRP 115, 184–189. https://www.doi.org/10.1016/j.procir.2022.10.071
- 74. May M.C., Nestroy C., Overbeck L., Lanza G., 2023, Automated model generation framework for material flow simulations of production systems, International Journal of Production Research, 62(1–2), 141–156. https://www.doi.org/10.1080/00207543.2023.2284833
- 75. Mesabbah M., McKeever S., 2018, Presenting A Hybrid Processing Mining Framework For Automated Simulation Model Generation, In: Proceedings of the 2018 Winter Simulation Conference (WSC), Gothenburg, Sweden, pp. 1370-1381. https://www.doi.org/10.1109/WSC.2018.8632467
- 76. Miaosi D., Pingbo T., Ruoxin X., 2024, Stabilizing Manufacturing Lines of Customized Building Mechanical Components under Uncertain Machinery Deterioration, In proceeding of Construction Research Congress 2024, pp. 680-690. https://www.doi.org/10.1061/9780784485286.068
- 77. Milde M., Horsthofer-Rauch J., Kroeger S., Reinhart G., 2023, Enabling Process Mining In Global Production Networks, Procedia CIRP vol. 120, 451-456. https://www.doi.org/10.1016/j.procir.2023.09.018
- 78. Mobaseri M., Mousavi S.N., Haghighi M.H.M., 2021, Causal effects of population growth on energy utilization and environmental pollution: A system dynamics approach, Caspian Journal of Environmental Sciences 19(4), 601-618. https://www.doi.org/10.22124/cjes.2021.5088
- 79. Moher D., Shamseer L., Clarke M., Ghersi D., Liberati A., Petticrew M., Shekelle P., Stewart L.A., 2015, Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1–9.
- 80. Moon J., Park G., Yang M., Jeong J., 2022, Design and Verification of Process Discovery Based on NLP Approach and Visualization for Manufacturing Industry, Sustainability 14, 1103. https://www.doi.org/10.3390/su1403110
- 81. Nakashima K., 2023, Production and Quality Management for SDGs. In: Urata, S., Akao, KI., Washizu, A. (eds) Sustainable Development Disciplines for Society. Sustainable Development Goals Series. Springer, Singapore. https://www.doi.org/10.1007/978-981-19-5145-9_7
- 82. Norambuena B.K., 2018, Integration of Process Mining and Simulation: A Survey of Applications and Current Research, In: Á. Rocha et al. (Eds): WorldCIST'18, AISC 745, pp. 287-294. https://www.doi.org/10.1007/978-3-319-77703-0_29
- 83. Novák P., Vyskocˇil J., 2022, Digitalized Automation Engineering of Industry 4.0 Production Systems and Their Tight Cooperation with Digital Twins, Processes 10, 404. https://www.doi.org/10.3390/pr10020404
- 84. Onggo B.S., Foramitti J., 2021, Agent-based Modeling and Simulation For Business and Management: A Review and Tutorial, in Proceedings of the 2021 Winter Simulation Conference.
- 85. Ortmeier C., Henningsen N., Langer A., Reiswich A., Karl A., Herrmann C., 2021, Framework for the integration of Process Mining into Life Cycle Assessment, Procedia CIRP 98, 163–168. https://www.doi.org/10.1016/j.procir.2021.01.024
- 86. Overbeck L., Brützel O., Teufel M., Stricker N., Kuhnle A., Lanza G., 2021, Continuous adaption through real data analysis turn simulation models into digital twins, Procedia CIRP 104, 98–103. https://www.doi.org/10.1016/j.procir.2021.11.017
- 87. Overbeck L., Graves S.C., Lanza G., 2023, Development and analysis of digital twins of production systems. International Journal of Production Research, 62(10), pp. 3544–3558. https://www.doi.org/10.1080/00207543.2023.2242525
- 88. Park K.T., Lee S.H., Noh S.D., 2022, Information fusion and systematic logic library-generation methods for self-configuration of autonomous digital twin, J Intell Manuf 33, pp. 2409–2439. https://www.doi.org/10.1007/s10845-021-01795-y
- 89. Pegoraro M., Uysal M.S., van der Aalst W.M.P., 2021, Conformance checking over uncertain event data, Information Systems 102, 101810. https://www.doi.org/10.1016/j.is.2021.101810
- 90. Pereira N., Franceschini S., Priore S., 2020, Food quality according to the production system and its relationship with food and nutritional security: a systematic review, Saúde Soc. São Paulo vol. 29, number 4. https://www.doi.org/10.1590/S0104-12902020200031
- 91. Petersen K., Feldt R., Mujtaba S., Mattsson M., 2008, Systematic mapping studies in software engineering, 12th International Conference on Evaluation and Assessment in Software Engineering (EASE) 12, 1–10.
- 92. Pett T., Thüm T., Runge T., Krieter S., Lochau M., Schaefer I., 2019, Product Sampling for Product Lines: The Scalability Challenge, in: 23rd International Systems and Software Product Line Conference, vol. A (SPLC ’19), September 9–13, 2019, Paris, France. https://www.doi.org/10.1145/3336294.3336322
- 93. Pourbafrani M., van Zelst S.J., van der Aalst W.M.P., 2020, Supporting Decisions in Production Line Processes by Combining Process Mining and System Dynamics, In: Ahram, T., Karwowski, W., Vergnano, A., Leali, F., Taiar, R. (eds) Intelligent Human Systems Integration 2020. IHSI 2020. Advances in Intelligent Systems and Computing, vol 1131. Springer, Cham. https://www.doi.org/10.1007/978-3-030-39512-4_72
- 94. Pourbafrani M., van Der Aalst W.M.P., 2022, Discovering System Dynamics Simulation Models Using Process Mining, in IEEE Access, vol. 10, pp. 78527-78547. https://www.doi.org/10.1109/ACCESS.2022.3193507
- 95. Pourbafrani M., van der Aalst W.M.P., 2022, Hybrid Business Process Simulation: Updating Detailed Process Simulation Models Using High-Level Simulations, in: Guizzardi, R., Ralyté, J., Franch, X. (eds) Research Challenges in Information Science. RCIS 2022. Lecture Notes in Business Information Processing, vol 446. Springer, Cham. https://www.doi.org/10.1007/978-3-031-05760-1_11
- 96. Pourbafrani M., van der Aalst W.M.P., 2023, Data-driven Simulation in Process Mining: Introducing a Reference Model, in: Proceedings of 37th ECMS International Conference on Modelling and Simulation. https://www.doi.org/10.7148/2023-0411
- 97. Rahim S.N.H.A., Embong A.H., 2021, Overall Equipment Utilisation (OEU) Monitoring and Remote Quality Check in Legacy Machine with Raspberry Pi, Journal of Integrated and Advanced Engineering (JIAE) vol. 1 no. 2, 135-144. https://www.doi.org/10.51662/jiae.v1i2.26
- 98. Ramonat M., M¨uller A.W., Fay A., 2021, Towards Automation of Regulatory Compliance Checking in the Product Design Phase, in: Proceedings of the 13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2021) vol. 2 KEOD, 136-143. https://www.doi.org/10.5220/0010644500003064
- 99. Robinson S., 2022, Exploring the relationship between simulation model accuracy and complexity, Journal of the Operational Research Society, 74(9), pp. 1992–2011. https://www.doi.org/10.1080/01605682.2022.2122740
- 100. Rudnitckaia J., Venkatachalam H.S., Essmann R., Hruška T., Colombo A.W., 2022, Screening Process Mining and Value Stream Techniques on Industrial Manufacturing Processes: Process Modelling and Bottleneck Analysis, in IEEE Access, vol. 10, pp. 24203-24214. https://www.doi.org/10.1109/ACCESS.2022.3152211
- 101. Ruschel E., de Freitas Rocha Loures E., Santos E.A.P., 2021, Performance analysis and time prediction in manufacturing systems, Computers & Industrial Engineering 151, 106972. https://www.doi.org/10.1016/j.cie.2020.106972
- 102. Saderova J., Rosova A., Behunova A., Behun M., Sofranko M., Khouri S., 2021, Case study: The simulation modelling of selected activity in a warehouse operation, Wireless Netw 28, 431–440. https://www.doi.org/10.1007/s11276-021-02574-6
- 103. Saraeian S., Shirazi B., 2020, Process mining-based anomaly detection of additive manufacturing process activities using a game theory modeling approach, Computers & Industrial Engineering vol. 146, 106584. https://www.doi.org/10.1016/j.cie.2020.106584
- 104. Şenaras A.E., 2018, A Suggestion for Energy Policy Planning System Dynamics, in P. Kumar, S. Singh, I. Ali, & T. Ustun (Eds.), Handbook of Research on Power and Energy System Optimization, pp. 658-681, IGI Global. https://www.doi.org/10.4018/978-1-5225-3935-3.ch019
- 105. Sgarbossa F., Grosse E.H., Neumann W.P., Battini D., Glock C.H., 2020, Human factors in production and logistics systems of the future, Annual Reviews in Control 49, 295–305. https://www.doi.org/10.1016/j.arcontrol.2020.04.007
- 106. Shams-Shemirani S., Tavakkoli-Moghaddam R., Amjadian A., Motamedi-Vafa B., 2023, Simulation and process mining in a cross-docking system: a case study, International Journal of Production Research, 62(13), 4902–4925. https://www.doi.org/10.1080/00207543.2023.2281665
- 107. Siderska J., 2016, Application of Tecnomatix Plant Simulation for Modeling Production and Logistics Processes, Bus. Manag. Educ. 14, 64–73. https://www.doi.org/10.3846/bme.2016.316
- 108. Siek M., Mukti R.M.G., 2020, Process Mining with Applications to Automotive Industry, IOP Conf. Series: Materials Science and Engineering 924, 012033. https://www.doi.org/10.1088/1757-899X/924/1/012033
- 109. Sinitò D., Santarcangelo V., Stanco F., Giacalone M., 2023, Industry 4.0: Machinery integration with supply chain and logistics in compliance with Italian regulations, MethodsX vol. 11, 102269. https://www.doi.org/10.1016/j.mex.2023.102269
- 110. Somogyi E., Sluka J.P., Glazier J.A., 2016, Formalizing knowledge in multi-scale agent-based simulations, in Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems, Saint-Malo, France, 2–7 October 2016; pp. 115–122. https://www.doi.org/10.1145/2976767.2976790
- 111. Stertz F., Mangler J., Rinderle-Ma S., 2020, Data-driven Improvement of Online Conformance Checking, 2020 IEEE 24th International Enterprise Distributed Object Computing Conference (EDOC), Eindhoven, Netherlands, pp. 187-196. https://www.doi.org/10.1109/EDOC49727.2020.00031
- 112. Straka M., Lenort R., Khouri S., Feliks J., 2018, Design of Large-Scale Logistics Systems Using Computer Simulation Hierarchic Structure, Int. J. Simul. Model 17, 105–118. https://www.doi.org/10.2507/IJSIMM17(1)422
- 113. Subramaniyan M., Skoogh A., Bokrantz J., Sheikh M.A., Thürer M., Chang Q., 2021, Artificial intelligence for throughput bottleneck analysis – State-of-the-art and future directions, Journal of Manufacturing Systems vol. 60, 734-751. https://www.doi.org/10.1016/j.jmsy.2021.07.021
- 114. Tabiri K.A., Akaba S., 2020, Economic resources utilisation in maize production: Evidence from Central Region, Ghana, Journal of Development and Agricultural Economics vol. 12(4), 221-228. https://www.doi.org/10.5897/JDAE2020.1175
- 115. Tamburis O., Esposito C., 2020, Process mining as support to simulation modeling: A hospital-based case study, Simulation Modelling Practice and Theory, vol. 104, 102149. https://www.doi.org/10.1016/j.simpat.2020.102149
- 116. Tan W.J., Seok M.G., Cai W., 2023, Automatic Model Generation and Data Assimilation Framework for Cyber-Physical Production Systems, in Proceedings of the 2023 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS '23), Association for Computing Machinery, New York, NY, USA, 73–83. https://www.doi.org/10.1145/3573900.3591112
- 117. Tošanović N., Štefanić N., 2022, Influence of Bottleneck on Productivity of Production Processes Controlled by Different Pull Control Mechanisms, Appl. Sci. 12, 1395. https://www.doi.org/10.3390/app12031395
- 118. Trstenjak M., Gregurić P., Janić Ž., Salaj D., 2024, Integrated Multilevel Production Planning Solution According to Industry 5.0 Principles, Applied Sciences 14(1):160. https://www.doi.org/10.3390/app14010160
- 119. Turner I., Heidari D., Pelletier N., 2022, Environmental impact mitigation potential of increased resource use efficiency in industrial egg production systems, Journal of Cleaner Production vol. 354, 131743. https://www.doi.org/10.1016/j.jclepro.2022.131743
- 120. Urban W., Rogowska P., 2020, Methodology for bottleneck identification in a production system when implementing TOC, Engineering Management in Production and Services vol. 12 issue 2, 74-82. https://www.doi.org/10.2478/emj-2020-0012
- 121. van der Aalst W.M.P., 2015, Processes Meet Big Data: Connecting Data Science with Process Science, IEEE Trans. Serv. Comput. 8, 6, 810–819. https://www.doi.org/10.1109/TSC.2015.2493732
- 122. van der Aalst W.M.P., 2016, Process Mining: Data Science in Action, Springer.
- 123. van der Aalst W.M.P., 2018, Process mining and simulation: A match made in heaven!, in Proc. 50th Comput. Simul. Conf., (SummerSim), Bordeaux, France, July 2018, pp. 1-4.
- 124. van der Aalst W.M.P., 2023, Object-Centric Process Mining: Unraveling the Fabric of Operational Processes, Mathematics 11, 2691. https://www.doi.org/10.3390/math11122691
- 125. van der Aalst W.M.P., 2024, Experiences from the Internet-of-Production: Using “Data-Models-in-the-Middle” to Fight Complexity and Facilitate Reuse, In: De Weerdt, J., Pufahl, L. (eds) Business Process Management Workshops, BPM 2023. Lecture Notes in Business Information Processing, vol 492. Springer, Cham. https://www.doi.org/10.1007/978-3-031-50974-2_7
- 126. van Zelst S.J., Mannhardt F., de Leoni M., et al., 2021, Event abstraction in process mining: literature review and taxonomy. Granul. Comput. 6, 719–736. https://www.doi.org/10.1007/s41066-020-00226-2
- 127. Velasquez N., Anani A., Munoz-Gama J., Pascual R., 2023, Towards the Application of Process Mining in the Mining Industry-An LHD Maintenance Process Optimization Case Study, Sustainability 15, 7974. https://www.doi.org/10.3390/su15107974
- 128. Vijayakumar V., Sgarbossa F., Neumann W.P., Sobhani A., 2021, Framework for incorporating human factors into production and logistics systems, International Journal of Production Research 60(2), 402–419. https://www.doi.org/10.1080/00207543.2021.1983225
- 129. Volna E., Kotyrba M., Janosek M., 2015, Knowledge discovery in dynamic data using neural networks, In Kuinam J. Kim, K. J. (ed.) Information Science and Applications. Lecture Notes in Electrical Engineering (Book series), Springer Verlag Berlin Heidelberg, vol. 339, 575-582. https://www.doi.org/10.1007/978-3-66246578-3_67
- 130. Waibel P., Novak C., Bala S., Revoredo K., Mendling J., 2021, Analysis of Business Process Batching Using Causal Event Models. In: Leemans, S., Leopold, H. (eds) Process Mining Workshops. ICPM 2020, Lecture Notes in Business Information Processing, vol 406. Springer, Cham. https://www.doi.org/10.1007/978-3-030-72693-5_2
- 131. Wofuru Nyenke O.K., Briggs T.A., Aikhuele D.O., 2023, Advancements in Sustainable Manufacturing Supply Chain Modelling: A Review, Process Integration and Optimization for Sustainability 7, 3–27. https://www.doi.org/10.1007/s41660-022-00276-w
- 132. Wu M., Veras J.H., 2022, The impacts of minor disruptions on a production system: Empirical analysis of assembly line data, Production Planning & Control 35(7), 655–669. https://www.doi.org/10.1080/09537287.2022.2119439
- 133. Wu T., Li J., Bao J., Liu Q., Jin Z., Gao J., 2024, CarbonKG: Industrial Carbon Emission Knowledge Graph-Based Modeling and Application for Carbon Traceability of Complex Manufacturing Process, J. Comput. Inf. Sci. Eng. 24(8). https://www.doi.org/10.1115/1.4065166
- 134. Yadav R., Roopa Y.M., Lavanya M., et al., 2023, Smart Production and Manufacturing System Using Digital Twin Technology and Machine Learning, SN COMPUT. SCI. 4, 561. https://www.doi.org/10.1007/s42979-023-01976-x
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfed3147-1e61-4c0c-8787-d5aa54edbb59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.