PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of efficient multiplier with low power and high-speed using PTL (Pass Transistor Logic)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The demand for low-power, high-speed, and area efficient digital circuits has driven the exploration of alternative logic families such as Pass Transistor Logic (PTL). The design of a multiplier circuit that leverages the inherent advantages of PTL to achieve significant improvements in power consumption, operational speed and silicon area usage. The proposed multiplier using PTL-based logic gates to generate partial products, followed by a reduction tree and a final addition stage, all optimized for performance and efficiency. Key design challenges, such as voltage degradation and level restoration inherent in PTL circuits, is addressed through carefully designed voltage restoration techniques and custom PTL cells. The architecture is compared against conventional CMOS-based multipliers to demonstrate its superiority in terms of power efficiency and speed. All the circuits are simulated using ECAD tools to analyze the power, delay, area and Power-Delay-Product (PDP) of the multiplier to highlight a substantial reduction in power consumption and a faster operation, making the PTL-based multiplier an ideal circuit for high-performance and low-power applications in modern digital systems. The proposed work contributes to the field of low-power digital design by showcasing the potential of PTL in creating multipliers which are not only efficient but also scalable for future technology nodes.
Słowa kluczowe
Twórcy
  • Rajeev Gandhi Memorial College of Engineering and Technology
  • Rajeev Gandhi Memorial College of Engineering and Technology
  • Rajeev Gandhi Memorial College of Engineering and Technology
autor
  • Rajeev Gandhi Memorial College of Engineering and Technology
autor
  • Rajeev Gandhi Memorial College of Engineering and Technology
  • Rajeev Gandhi Memorial College of Engineering and Technology
  • Rajeev Gandhi Memorial College of Engineering and Technology
autor
  • Rajeev Gandhi Memorial College of Engineering and Technology
Bibliografia
  • [1] G. G. Kumar and S. K. Sahoo, “Implementation of a high speed multiplier for high-performance and low power applications,” in Proc.19th Int. Symp. VLSI Design Test, 2015, pp. 1-4.
  • [2] C. Senthilpari, A. K. Singh, and K. Diwakar, “Low power and high speed 8x8 bit multiplier using non-clocked pass transistor logic,” in Proc. Int.Conf. Intell. Adv. Syst., 2007, pp. 1374-1378.
  • [3] J. Pihl and E. J. Aas, “A multiplier and squarer generator for high performance DSP applications,” in Proc. 39th Midwest Symp. Circuits Syst., vol. 1, 1996, pp. 109-112.
  • [4] Z. Huang and M. D. Ercegovac, “High-performance low-power left-to-right array multiplier design,” IEEE Trans.Comput., vol. 54,no. 3, pp. 272-283, Mar. 2005.
  • [5] [5] S.-R. Kuang, J.-P. Wang, and C.-Y. Guo, “Modified booth multipliers with a regular partial product array,” IEEE Trans. Circuits Syst. II, Exp.Briefs, vol. 56, no. 5, pp. 404-408, May 2009.
  • [6] Y.-D. Chih et al., “16.4 an 89TOPS/W and 16.3TOPS/mm 2 all- digital SRAM-based full-precision compute-in memory macro in 22nm for machine-learning edge applications,” in Proc. IEEE Int.Solid-StateCircuits Conf. (ISSCC), 2021, pp. 252-254.
  • [7] D. Wang, C.-T. Lin, G. K. Chen, P. Knag, R. K. Krishnamurthy, and
  • [8] M. Seok, “DIMC: 2219TOPS/W 2569F2/b digital in-memory computing macro in 28nm based on approximate arithmetic hardware,” in Proc.IEEE Int. Solid- State Circuits Conf. (ISSCC), 2022, pp. 266-268.
  • [9] G. Goto et al., “A 4.1-ns compact 54/spl times/54-b multiplier utilizing sign-select booth encoders,” IEEE J. Solid-State Circuits, vol. 32, no. 11,
  • [10] pp. 1676-1682, Nov. 1997.
  • [11] A. C. Ranasinghe and S. H. Gerez, “Glitch-Optimized circuit blocks for low-power high-performance booth multipliers,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 9, pp. 2028-2041, Sep. 2020.
  • [12] H. Naseri and S. Timarchi, “Low-power and fast full adder by exploring new XOR and XNOR gates,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst., vol. 26, no. 8, pp. 1481-1493, Aug. 2018.
  • [13] J.-M. Wang, S.-C. Fang, and W.-S. Feng, “New efficient designs for XOR and XNOR functions on the transistor level,” IEEE J. Solid-State Circuits, vol. 29, no. 7, pp. 780-786, Jul. 1994.
  • [14] A. M. Shams and M. A. Bayoumi, “A novel high-performance CMOS 1-bit full-adder cell,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 47, no. 5, pp. 478-481, May 2000.
  • [15] N. V. V. K. Boppana, J. Kommareddy, and S. Ren, “Low-cost and high performance 8 × 8 booth multiplier,” Circuits, Syst., Signal Process.,vol. 38, pp. 4357-4368,Jan. 2019.
  • [16] A. Stillmaker and B. Baas, “Scaling equations for the accurate prediction of CMOS device performance from 180nm to 7nm,” Integration, vol. 58, pp. 74-81, Jun. 2017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfed081e-b28c-470f-a94b-e64f833596e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.