PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Highly Scalable Quantum Transfer Matrix Simulations of Molecule-Based Nanomagnets on a Parallel IBM BlueGene/P Architecture

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work we present a very efficient scaling of our two applications based on the quantum transfer matrix method which we exploited to simulate the thermodynamic properties of Cr9 and Mn6 molecules as examples of the uniform and non-uniform molecular nanomagnets. The test runs were conducted on the IBM BlueGene/P supercomputer JUGENE of the Tier-0 performance class installed in the Jülich Supercomputing Centre.
Twórcy
autor
  • Faculty of Physics, A. Mickiewicz University Umultowska 85, 61-614 Pozna´n, Poland
  • Faculty of Physics, A. Mickiewicz University Umultowska 85, 61-614 Pozna´n, Poland
autor
  • Institute of Engineering and Computer Education, University of Zielona Góra, ul. Prof. Szafrana 4a, 65-516 Zielona Góra, Poland
  • Faculty of Physics, A. Mickiewicz University Umultowska 85, 61-614 Pozna´n, Poland
Bibliografia
  • [1] D. Gatteschi, R. Sessoli, and J. Villain, Molecular nanomagnets, Oxford University Press, Oxford, 2006.
  • [2] M. Mannini, F. Pineider, P. Sainctavit, C. Danieli, E. Otero, C. Sciancalepore, A.M. Talarico, M-A. Arrio, A. Cornia, D. Gatteschi, and R. Sessoli, Magnetic memory of a singlemolecule quantum magnet wired to a gold surface, Nature Mater. 8, 194-197 (2009).
  • [3] A. Ardavan, O. Rival, J.J.L. Morton, S.J. Blundell, A.M. Tyryshkin, G.A. Timco, and R.E.P. Winpenny, Will spinrelaxation times in molecular magnets permit quantum information processing?, Phys. Rev. Lett. 98, 057201 (2007).
  • [4] J. Lehmann, A. Gaita-Ariño, E. Coronado, and D. Loss, Spin qubits with electrically gated polyoxometalate molecules, Nature Nano. 2, 312-317 (2007).
  • [5] G.A. Timco, S. Carretta, F. Troiani, F. Tuna, R.J. Pritchard, Ch. A. Muryn, E.J.L. McInnes, A. Ghirri, A. Candini, P. Santini, G. Amoretti, M. Affronte, and R.E.P. Winpenny, Engineering the coupling between molecular spin qubits by coordination chemistry, Nature Nano. 4, 173-178 (2009).
  • [6] B. Georgeot and F. Mila, Chirality of triangular antiferromagnetic clusters as qubit, Phys. Rev. Lett. 104, 200502 (2010).
  • [7] D. Gatteschi, R. Sessoli, and A. Cornia, Single-molecule magnets based on iron (III) oxo clusters, Chem. Commun., pages 725-732 (2000).
  • [8] S.G. Louie, Nanoparticles behaving oddly, Nature 384(6610), 612-613 (1996), 10.1038/384612a0.
  • [9] O. Cador, D. Gatteschi, R. Sessoli, A-L. Barra, G.A. Timco, and R.E.P. Winpenny, Spin frustration effects in an oddmembered antiferromagnetic ring and the magnetic Möbius strip, J. Magn. Magn. Mater. 290-291, 55-60 (2005).
  • [10] Y. Furukawa, K. Kiuchi, K. Kumagai, Y. Ajiro, Y. Narumi, M. Iwaki, K. Kindo, A. Bianchi, S. Carretta, P. Santini, F. Borsa, G.A. Timco, and R.E.P. Winpenny, Evidence of spin singlet ground state in the frustrated antiferromagnetic ring Cr8Ni, Phys. Rev. B 79, 134416 (2009).
  • [11] K. Bärwinkel, H.J. Schmidt, and J. Schnack, Ground-state properties of antiferromagnetic Heisenberg spin rings, J. Magn. Magn. Mater. 220, 227-234 (2000).
  • [12] J. Schnack, Properties of the first excited state of nonbipartite Heisenberg spin rings, Phys. Rev. B 62, 14855-14859 (2000).
  • [13] P. Kozłowski, M. Antkowiak, and G. Kamieniarz, Frustration signatures in the anisotropic model of a nine-spin s = 3=2 ring with bond defect, J. Nanopart. Res. (2011).
  • [14] M.L. Baker, G.A. Timco, S. Piligkos, J.S. Mathieson, H. Mutka, F. Tuna, P. Kozłłowski, M. Antkowiak, T. Guidi, T Gupta, H. Rath, R.J. Woolfson, G. Kamieniarz, R.G. Pritchard, H. Weihe, L. Cronin, G. Rajaraman, D. Collison, E.J.L. McInnes, and R.E.P. Winpenny, Spin frustration in molecular magnets - a classification: physical studies of large odd-numbered-metal, odd-electron rings, Proc. Natl. Acad. Sci. USA109(47), 19113-19118 (2012).
  • [15] M. Antkowiak, P. Kozłłowski, G. Kamieniarz, G.A. Timco, F. Tuna, and R.E.P. Winpenny, Detection of ground states in frustrated molecular rings by the in-field local magnetization profiles, Phys. Rev. B 87, 184430 (2013).
  • [16] A. Caramico D’Auria, U. Esposito, F. Esposito, G. Kamieniarz, and R. Matysiak, Exact simulations of quantum rings and characterization of hexanuclear manganese and dodecanuclear cyclic complexes, J. Phys.: Condens. Matter 13, 2017 (2001).
  • [17] G. Kamieniarz, R. Matysiak, A. Caramico D’Auria, F. Esposito, and C. Benelli, Finite-temperature characterization and simulations of the molecular assemblies Mn6 and Ni12, Eur. Phys. J. B 23, 183 (2001).
  • [18] D. Gatteschi, A. Caneschi, L. Pardi, and R. Sessoli, Large clusters of metal ions: The transition from molecular to bulk magnets, Science 265(5175), 1054 (1994).
  • [19] A. Caneschi, D. Gatteschi, C. Sangregorio, R. Sessoli, L. Sorace, A. Cornia, MA Novak, C. Paulsen, and W. Wernsdorfer, The molecular approach to nanoscale magnetism, Journal of magnetism and magnetic materials 200(1-3), 182-201, (1999).
  • [20] G. Kamieniarz and R. Matysiak, Simulations of the lowdimensional magnetic systems by the quantum transfer-matrix technique, Computational Materials Science 28(2), 353-365 (2003), Proceedings of the Symposium on Software Development for Process and Materials Design.
  • [21] G. Kamieniarz and R. Matysiak, Transfer matrix simulation technique: effectiveness and applicability to the lowdimensional magnetic spin systems, J. Comput. Appl. Math. 189, 471-480 (May 2006).
  • [22] G. Kamieniarz, P. Kozłłowski, M. Antkowiak, P. Sobczak, T. Ślusarski, D.M. Tomecka, A. Barasiński, B. Brzostowski, A. Drzewiński, A. Bieńko, and J. Mroziński, Anisotropy, Geometric Structure and Frustration Effects in Molecule-Based Nanomagnets, Acta Physica Polonica A121(5-6), 992-998 (2011).
  • [23] G. Kamieniarz, W. Florek, and M. Antkowiak, Universal sequence of ground states validating the classification of frustration in antiferromagnetic rings with a single bond defect, Phys. Rev. B 92, 140411(R) (2015).
  • [24] G. Kamieniarz, P. Kozłowski, G. Musiał, W. Florek, M. Antkowiak, M. Haglauer, A.C. D’Auria, and F. Esposito, Phenomenological modeling of molecular-based rings beyond the strong exchange limit: Bond alternation and single-ion anisotropy effects, Inorg. Chim. Acta 361, 3690-3696 (2008).
  • [25] P. Kozłowski, G. Kamieniarz, M. Antkowiak, F. Tuna, G.A. Timco, and R.E.P. Winpenny, Phenomenological modeling of the anisotropic molecular-based ring Cr7Cd, Polyhedron 28, 1852-1855 (2009).
  • [26] R. Matysiak, G. Kamieniarz, P. Gegenwart, and A. Ochiai, Field-dependent specific heat of Yb4As3: Agreement between a spin-1/2 model and experiment, Phys. Rev. B 79, 224413 (2009).
  • [27] R. Matysiak, P. Gegenwart, A. Ochiai, M. Antkowiak, G. Kamieniarz, and F. Steglich, Specific heat of segmented Heisenberg quantum spin chains in (Yb1_xLux)4As3, Phys. Rev. B 88, 224414 (2013).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfeb4a08-c36d-4ac6-acd2-578ca1cb3a72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.