PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of discharge tube properties on parameters of surfacewave sustained plasm

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wpływ właściwości rury wyładowczej na parametry plazmy mikrofalowej wytwarzanej przez falę powierzchniową
Języki publikacji
EN
Abstrakty
EN
The effects of inner and outer radius, permittivity and discharge tube temperature on electromagnetic wave propagation and attenuation coefficients, as well as gas temperature, electron temperature and density in a microwave discharge sustained by a surface wave in argon at 2.45 GHz were numerically investigated. A two-temperature plasma model and the assumption of local axial uniformity of the discharge were used for the calculations.
PL
Zbadano numerycznie wpływ promienia wewnętrznego i zewnętrznego, przenikalności elektrycznej i temperatury rury wyładowczej na współczynniki propagacji i tłumienia fali elektromagnetycznej oraz temperaturę gazu, temperaturę i gęstość elektronów w mikrofalowym wyładowaniu podtrzymywanym falą powierzchniową o częstotliwości 2,45 GHz w argonie pod ciśnieniem atmosferycznym. Do obliczeń wykorzystano dwutemperaturowy model plazmy i założenie o lokalnej osiowej jednorodności wyładowania.
Rocznik
Strony
20--26
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
  • Instytut Maszyn Przepływowych im. Roberta Szewalskiego PAN, ul. Fiszera 14, 80- 952 Gdańsk
Bibliografia
  • [1] Moisan M., Zakrzewski Z., Pantel R., The theory and characteristics of an efficient surface wave launcher (surfatron) producing long plasma columns, J Phys Appl Phys 12 (1979), 219–37
  • [2] Moisan M., Glaude V., Leprince P., Mitchel G., Zakrzewski Z., Surfaguide - waveguide plasma source using surface-waves, Bulletin of the American Physical Society, 21 (1976), 812–812
  • [3] Kabouzi Y., Moisan M., Rostaing J-C., Trassy C., Guerin D., Keroack D., Zakrzewski Z., Abatement of perfluorinated compounds using microwave plasmas at atmospheric pressure, J Appl Phys 93 (2003), No. 12, 9483–96
  • [4] Muñoz J., Rincón R., Calzada MD., Spatial Distribution of Wettability in Aluminum Surfaces Treated with an Atmospheric-Pressure Remote-Plasma, Metals 9 (2019), No. 9, 937
  • [5] Chen G., Silva T., Georgieva V., Godfroid T., Britun N., Snyders R., Delplancke-Ogletree MP., Simultaneous dissociation of CO2 and H2O to syngas in a surface-wave microwave discharge, Int J Hydrog Energy 40 (2015), No. 9, 3789–96
  • [6] Casanova A., Rincón R., Muñoz J., Ania CO., Calzada MD., Optimizing high-quality graphene nanoflakes production through organic (bio)-precursor plasma decomposition, Fuel Process Technol 212 (2021), 106630(12)
  • [7] de la Fuente JF., Moreno SH., Stankiewicz AI., Stefanidis GD., On the improvement of chemical conversion in a surface-wave microwave plasma reactor for CO2 reduction with hydrogen (The Reverse Water-Gas Shift reaction), Int J Hydrog Energy 42 (2017), No. 18, 12943–55
  • [8] Sadeghikia F., Talafi Noghani M., Simard MR., Experimental study on the surface wave driven plasma antenna, AEU - Int J Electron Commun 70 (2016), No. 5, 652–6
  • [9] Moisan M., Nowakowska H., Contribution of surfacewave (SW) sustained plasma columns to the modeling of RF and microwave discharges with new insight into some of their features. A survey of other types of SW discharges, Plasma Sources Sci Technol 27 (2018), No. 7, 073001(43)
  • [10] Glaude VMM., Moisan M., Pantel R., Leprince P., Marec J., Axial electron density and wave power distributions along a plasma column sustained by the propagation of a surface microwave, J Appl Phys 51 (1980), No. 11, 5693–8
  • [11] Zhelyazkov I., Benova E., Modeling of a plasma column produced and sustained by a traveling electromagnetic surface wave, J Appl Phys 66 (1989), No. 4, 1641–50
  • [12] Zhelyazkov I., Atanassov V., Axial structure of lowpressure high-frequency discharges sustained by travelling electromagnetic surface waves, Phys Rep 255 (1995), No. 2–3, 79–201
  • [13] Kabouzi Y., Graves DB., Castaños-Martínez E., Moisan M., Modeling of atmospheric-pressure plasma columns sustained by surface waves, Phys Rev E 75 (2007), No. 1, 016402(14)
  • [14] Georgieva V., Berthelot A., Silva T., Kolev S., Graef W., Britun N. et al., Understanding Microwave Surface-Wave Sustained Plasmas at Intermediate Pressure by 2D Modeling and Experiments, Plasma Process Polym 14 (2017), No. 4–5, 1600185(25)
  • [15] Tebani H., A global model for the inductively coupled rf discharges in Ar/H2 mixture, Przegląd Elektrotechniczny 1 (2021), No. 1, 32–8
  • [16] Kemaneci E., Mitschker F., Rudolph M., Szeremley D., Eremin D., Awakowicz P., Peter Brinkmann R., A global model of cylindrical and coaxial surface-wave discharges, J Phys Appl Phys 50 (2017), No. 24, 245203
  • [17] Castaños Martinez E., Kabouzi Y., Makasheva K., Moisan M., Modeling of microwave-sustained plasmas at atmospheric pressure with application to discharge contraction,Phys Rev E 70 (2004), No. 6, 066405(12)
  • [18] Nowakowska H., Czylkowski D., Zakrzewski Z., Surface wave sustained discharge in argon: two-temperature collisional-radiative model and experimental verification, J Optoelectron Adv Mater 7 (2005), No. 5, 2427–34
  • [19] Nowakowska H., Jasiński M., Mizeraczyk J., Modelling of discharge in a high-flow microwave plasma source (MPS), Eur Phys J D 67 (2013), No. 7, 133(8)
  • [20] Jimenez-Diaz M., Carbone EAD., van Dijk J., van der Mullen JJAM., A two-dimensional Plasimo multiphysics model for the plasma–electromagnetic interaction in surface wave discharges: the surfatron source, J Phys Appl Phys 45 (2012), No. 33, 335204
  • [21] Christova M., Castaños-Martinez E., Calzada MD., Kabouzi Y., Luque JM., Moisan M., Electron Density and Gas Temperature from Line Broadening in an Argon Surface-Wave-Sustained Discharge at Atmospheric Pressure, Appl Spectrosc 58 (2004), No. 9, 1032–7
  • [22] Sáinz A., García MC., Calzada MD., Spectroscopic determination of the electron temperature in non-LTE argon and neon plasmas, 2005 ECA Vol. 29C, P-4.132. Tarragona (2005)
  • [23] Durocher-Jean A., Desjardins E., Stafford L., Characterization of a microwave argon plasma column at atmospheric pressure by optical emission and absorption spectroscopy coupled with collisional-radiative modelling, Phys Plasmas 26 (2019), No. 6, 063516(13)
  • [24] Castaños-Martínez E., Moisan M., Kabouzi Y., Achieving non-contracted and non-filamentary rare-gas tubular discharges at atmospheric pressure, J Phys Appl Phys 42 (2009), No. 1, 012003(5)
  • [25] Ridenti MA., de Amorim J., Dal Pino A., Guerra V., Petrov G., Causes of plasma column contraction in surface-wave-driven discharges in argon at atmospheric pressure, Phys Rev E 97 (2018), No. 1, 013201(14)
  • [26] Kovačević MS., Kuzmanović L., Milošević MM., Djordjevich A., An estimation of the axial structure of surface-wave produced plasma column, Phys Plasmas 28 (2021), No. 2, 023502(5)
  • [27] Chen C-J., Li S-Z., Wu Y., Zhang J., Investigation of role of the discharge tube in pulse modulated surface-wave argon plasma column at atmospheric pressure by optical emission spectroscopy, Phys Plasmas 26 (2019), No. 5, 053506
  • [28] Fujiwara K., Endo M., Ikeda Y., Suzuki T., Yanagisawa M., Shindo H., Radio-Frequency Downstream Plasma Production by Surface-Wave in a Very High-Permittivity Material Discharge Tube, Jpn J Appl Phys 44 (2005), No. 15, L457–60
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfe8dede-329e-40ea-aaae-b142593c584e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.