PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of slip systems activity and grain boundary sliding in fine‑grained superplastic zinc alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Zn alloys are desirable candidates for biodegradable materials due to their great biocompatibility and suffcient mechanical properties. Nevertheless, the most popular strengthening method by grain refinement after cold processing is usually ineffective in Zn alloys. Besides highly anisotropic deformation through a dislocation slip, grain boundary sliding (GBS) plays an important role in total deformation in fine-grained Zn alloys at room temperature (RT). Herein, Zn-0.5Cu (wt. %) alloy is fabricated by RT equal channel angular pressing, and its deformation mechanisms in tension were systematically analyzed at strain rates from 10-4s-1 to 10o. GBS contribution in total deformation was measured using surface markers and atomic force microscopy. In addition, dislocation slip activity was evaluated via electron-backscattered diffraction-based slip trace analysis. As a result, investigated alloy presents the GBS contribution in a total deformation at RT from 35% at the strain rate [...]. Simultaneously, the number of slip-deformed grains decreased from 97.5% to 8%. Moreover, the basal slip system was dominant at all strain rates, while the prismatic and the pyramidal < c + a > slip systems were activated at the higher strain rates. The results presented here for the first time clearly show the complexity of deformation mechanisms in fine-grained Zn–0.5Cu, at significantly different strain rate conditions.
Rocznik
Strony
art. e253, 1--11
Opis fizyczny
Bibliogr. 34 poz., il., rys., wykr.
Twórcy
  • Warsaw University of Technology, Warsaw, Poland
  • Academic Centre for Materials and Nanotechnology, AGH, Krakow, Poland
  • Laboratory of Mechanics of Materials and Nanostructures, Thun, Switzerland
  • Academic Centre for Materials and Nanotechnology, AGH, Krakow, Poland
autor
  • Academic Centre for Materials and Nanotechnology, AGH, Krakow, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH Krakow, Poland
Bibliografia
  • 1. Kabir H, Munir K, Wen C, Li Y. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioact Mater. 2021;6:836-79.
  • 2. Q. Liu, A. Li, S. Liu, Q. Fu, Y. Xu, J. Dai, P. Li, S. Xu, Cytotoxicity of Biodegradable Zinc and Its Alloys: A Systematic Review, J. Funct. Biomater. 14 (2023).
  • 3. M. Wątroba, W. Bednarczyk, J. Kawałko, S. Lech, K. Wieczerzak, T.G. Langdon, P. Bała, A Novel High-Strength Zn-3Ag-0.5Mg Alloy Processed by Hot Extrusion, Cold Rolling, or High-Pressure Torsion, Metall. Mater. Trans. A. 51 (2020) 3335-3348.
  • 4. Yang M, Yang L, Peng S, Deng F, Li Y, Yang Y, Shuai C. Laser additive manufacturing of zinc: formation quality, texture, and cell behavior. Bio-Design Manuf. 2023;6:103-20.
  • 5. Bednarczyk W, Wątroba M, Kawałko J, Bała P. Can zinc alloys be strengthened by grain refinement? A critical evaluation of the processing of low-alloyed binary zinc alloys using ECAP. Mater Sci Eng A. 2019;748:357-66.
  • 6. Jarzębska A, Maj Ł, Bieda M, Chulist R, Wojtas D, Wątroba M, Janus K, Rogal Ł, Sztwiertnia K. Dynamic Recrystallization and Its Effect on Superior Plasticity of Cold-Rolled Bioabsorbable Zinc-Copper Alloys. Materials (Basel). 2021;14:3483.
  • 7. Langdon TG. An evaluation of the strain contributed by grain boundary sliding in superplasticity. Mater Sci Eng A. 1994;174:225-30.
  • 8. Mostaed E, Ardakani MS, Sikora-Jasinska M, Drelich JW. Precipitation induced room temperature superplasticity in Zn-Cu alloys. Mater Lett. 2019;244:203-206.
  • 9. W. Bednarczyk, M. Wątroba, J. Kawałko, P. Bała, Determination of room-temperature superplastic asymmetry and anisotropy of Zn-0.8Ag alloy processed by ECAP, Mater. Sci. Eng. A. 759 (2019) 55-58.
  • 10. Mostaed E, Sikora-Jasinska M, Ardakani MS, Mostaed A, Reaney IM, Goldman J, Drelich JW. Towards revealing key factors in mechanical instability of bioabsorbable Zn-based alloys for intended vascular stenting. Acta Biomater. 2020;105:319-35.
  • 11. S. Zhu, C. Wu, G. Li, Y. Zheng, J.F. Nie, Microstructure, mechanical properties and creep behaviour of extruded Zn-xLi (x = 0.1,0.3 and 0.4) alloys vascular stent applications, Mater. Sci. Eng. A. 777 (2020) 139082.
  • 12. Langdon TG. Grain boundary sliding revisited: Developments in sliding over four decades. J Mater Sci. 2006;41:597-609.
  • 13. Partridge PG. The crystallography and deformation modes of hexagonal close-packed metals. Metall Rev. 1967;12:169-94.
  • 14. R. Parisot, S. Forest, A. Pineau, F. Grillon, X. Demonet, J.-M. Mataigne, Deformation and damage mechanisms of zinc coatings on hot-dip galvanized steel sheets: Part I. Deformation modes, Metall. Mater. Trans. A. 35 (2004) 797-811.
  • 15. Cepeda-Jimenez CM, Molina-Aldareguia JM, Perez-Prado MT. Origin of the twinning to slip transition with grain size refinement, with decreasing strain rate and with increasing temperature in magnesium. Acta Mater. 2015;88:232-244.
  • 16. Frydrych K, Jarzębska A, Virupakshi S, Kowalczyk-Gajewska K, Bieda M, Chulist R, Skorupska M, Schell N, Sztwiertnia K. Texture-Based Optimization of Crystal Plasticity Parameters: Application to Zinc and Its Alloy. Metall Mater Trans A. 2021.
  • 17. Cauvin L, Raghavan B, Bouvier S, Wang X, Meraghni F. Multiscale investigation of highly anisotropic zinc alloys using crystal plasticity and inverse analysis. Mater Sci Eng A. 2018;729:106-118.
  • 18. B. Fernandez Silva, J. Kawalko, K. Muszka, M. Jackson, K. Fox, B.P.P. Wynne, Deformation modes investigation during ex-situ dwell fatigue testing in a bimodal near-α titanium alloy, Int. J. Fatigue. 163 (2022) 107098.
  • 19. Cepeda-Jimenez CM, Molina-Aldareguia JM, Perez-Prado MT. Effect of grain size on slip activity in pure magnesium polycrystals. Acta Mater. 2015;84:443-56.
  • 20. W. Bednarczyk, J. Kawałko, M. Wątroba, P. Bała, Achieving room temperature superplasticity in the Zn-0.5Cu alloy processed via equal channel angular pressing, Mater. Sci. Eng. A. 723 (2018) 126-133.
  • 21. Henseler T, Osovski S, Ullmann M, Kawalla R, Prahl U. GTN model-based material parameters of AZ31 magnesium sheet at various temperatures by means of SEM in-situ testing. Crystals. 2020;10:1-19.
  • 22. Bachmann F, Hielscher R, Schaeben H. Texture Analysis with MTEX – Free and Open Source Software Toolbox. Solid State Phenom. 2010;160:63-68.
  • 23. D. Mainprice, F. Bachmann, R. Hielscher, H. Schaeben, Descriptive tools for the analysis of texture projects with large datasets using MTEX : strength, symmetry and components, Geol. Soc. London, Spec. Publ. 409 (2015) 251-271.
  • 24. Mungole T, Kumar P, Kawasaki M, Langdon TG. The contribution of grain boundary sliding in tensile deformation of an ultrafine-grained aluminum alloy having high strength and high ductility. J Mater Sci. 2015;50:3549-61.
  • 25. W. Bednarczyk, J. Kawałko, M. Wątroba, N. Gao, M.J. Starink, P. Bała, T.G. Langdon, Microstructure and mechanical properties of a Zn-0.5Cu alloy processed by high-pressure torsion, Mater. Sci. Eng. A. 776 (2020) 139047.
  • 26. Chokshi AH. An evaluation of the grain-boundary sliding contribution to creep deformation in polycrystalline alumina. J Mater Sci. 1990;25:3221-3228.
  • 27. N. Mollaei, S.M. Fatemi, M.R. Aboutalebi, S.H. Razavi, W. Bednarczyk, Dynamic recrystallization and deformation behavior of an extruded Zn-0.2 Mg biodegradable alloy, J. Mater. Res. Technol. 19 (2022) 4969-4985.
  • 28. Wątroba M, Bednarczyk W, Kawałko J, Bała P. Fine-tuning of mechanical properties in a Zn–Ag–Mg alloy via cold plastic deformation process and post-deformation annealing. Bioact Mater. 2021;6:3424-3436.
  • 29. A. Gokhale, S. R, E.-W.W. Huang, S.Y. Lee, R. Prasad, S.S. Singh, J. Jain, R. Sarvesha, E.-W.W. Huang, S. Yeol Lee, R. Prasad, S.S. Singh, J. Jain, Quantitative evaluation of grain boundary sliding and its dependence on orientation and temperature in pure Zn, Mater. Lett. 246 (2019) 24-27.
  • 30. T. Matsunaga, K. Takahashi, T. Kameyama, E. Sato, Relaxation mechanisms at grain boundaries for ambient-temperature creep of h.c.p. metals, Mater. Sci. Eng. A. 510–511 (2009) 356-358.
  • 31. Shi DFF, Perez-Prado MTT, Cepeda-Jimenez CMM. Effect of solutes on strength and ductility of Mg alloys. Acta Mater. 2019;180:218-230.
  • 32. Sheikh-Ali AD, Garmestani H. Evolution of surface and bulk textures during superplastic deformation in a zinc alloy. Mater Lett. 2007;61:478-481.
  • 33. Hall EO. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc Phys Soc Sect B. 1951;64:747-753.
  • 34. Bednarczyk W, Wątroba M, Jain M, Mech K, Bazarnik P, Bała P, Michler J, Wieczerzak K. Determination of critical resolved shear stresses associated with slips in pure Zn and Zn-Ag alloys via micro-pillar compression. Mater Des. 2023;229: 111897.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfe6f104-df26-433c-be4e-0dcfa4a49830
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.