PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and kinetic study of zinc leaching from metallurgical slag by 5-sulfosalicylic acid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As an organic acid with the characters of low corrosivity and extensive source, 5-sulfosalicylic acid (5-SSA) was firstly utilized as a potential leaching reagent for the recovery of zinc from metallurgical slag. Effects of stirring speed, leaching temperature, 5-SSA concentrations and size fraction on the leaching zinc leaching rate were investigated. A zinc leaching efficiency of 94.2% was achieved under the appropriate operating conditions (450 rpm of stirring speed, 50 ℃ of leaching temperature, 0.3 mol/L of 5-SSA concentration and d90=65 µm of size fraction), indicating that 5-SSA was an excellent leaching reagent of zinc oxide. SEM-EDS and specific surface aperture analyzer further reveal the well-developed micropores and cracks from zinc metallurgical slag, which could be assigned to the removal of zinc oxide encapsulated in the sample. In addition, the leaching kinetics of zinc metallurgical slag in the 5-SSA was studied. It was found that the surface chemical reaction model satisfactorily predicted the zinc leaching rate. A reaction kinetic equation was finally established for the zinc leaching rate.
Rocznik
Strony
8--20
Opis fizyczny
Bibliogr. 43 poz., rys. kolor.
Twórcy
autor
  • College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
autor
  • College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
autor
  • College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
autor
  • College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
autor
  • College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
autor
  • Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Minerals Resources, Wuhan, 430081, China
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
  • siyuan.yang@whut.edu.cn
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
  • 145601011@csu.edu.cn
Bibliografia
  • AJIBOYE, E.A., PANDA, P.K., ADEBAYO, A.O., AJAYI, O.O., TRIPATHY, B.C., GHOSH, M.K., BASU, S., 2019. Leaching kinetics of Cu, Ni and Zn from waste silica rich integrated circuits using mild nitric acid, 188, 161-168.
  • ASADI, T., AZIZI, A., LEE, J.C., JAHANI, M., 2017. Leaching of zinc from a lead-zinc flotation tailing sample using ferric sulphate and sulfuric acid media. Journal of Environmental Chemical Engineering, 5(5), 4769-4775.
  • BEHERA, S.S., PANDA, S.K., MANDAL, D., PARHI, P.K., 2019. Ultrasound and Microwave assisted leaching of neodymium from waste magnet using organic solvent. Hydrometallurgy, 185, 61-70.
  • BEHNAJADY, B., MOGHADDAM, J., 2017. Selective leaching of zinc from hazardous As-bearing zinc plant purification filter cake. Chemical Engineering Research and Design, 117, 564-574.
  • BRYNDAL, I., LEDOUX-RAK, I., LIS, T., RATAJCZAK, H., 2014. Search for molecular crystals with NLO properties: 5-Sulfosalicylic acid with nicotinamide and isonicotinamide. Journal of Molecular Structure, 1068, 77-83.
  • CAO, Y., YAN, L., HUANG, H., DENG, B., 2016. Selenium speciation in radix puerariae using ultrasonic assisted extraction combined with reversed phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry after magnetic solid-phase extraction with 5-sulfosalicylic acid functionalized magnetic nanoparticles. Spectrochimica Acta Part B: Atomic Spectroscopy, 122, 172-177.
  • CHAIRAKSA-FUJIMOTO, R., MARUYAMA, K., MIKI, T., NAGASAKA, T., 2016. The selective alkaline leaching of zinc oxide from Electric Arc Furnace dust pre-treated with calcium oxide. Hydrometallurgy, 159, 120-125.
  • CHEN, C., ZHU, X., WU, Y., SUN, H., ZHANG, G., ZHANG, W., GAO, Z., 2014. 5-Sulfosalicylic acid catalyzed direct Mannich reaction in pure water. Journal of Molecular Catalysis A: Chemical, 395, 124-127.
  • EHSANI, İ., OBUT, A., 2019. Conversion behaviours of Sr- and Ca-containing solids in dissolved carbonate containing alkaline pregnant zinc leaching solutions. Minerals Engineering, 135, 9-12.
  • FALAGÁN, C., YUSTA, I., SÁNCHEZ-ESPAÑA, J., JOHNSON, D.B., 2017. Biologically-induced precipitation of aluminium in synthetic acid mine water. Minerals Engineering, 106, 79-85.
  • GU, K., LI, W., HAN, J., LIU, W., QIN, W., CAI, L., 2019. Arsenic removal from lead-zinc smelter ash by NaOH-H2O2 leaching. Separation and Purification Technology, 209, 128-135.
  • GÜLER, E., SEYRANKAYA, A., 2016. Precipitation of impurity ions from zinc leach solutions with high iron contents - A special emphasis on cobalt precipitation. Hydrometallurgy, 164, 118-124.
  • HACARLIOGLU, P., ACHENIE, L., TED OYAMA, S., 2011. Ab Initio Studies of Silica-Based Membranes, In Inorganic Polymeric and Composite Membranes - Structure, Function and Other Correlations, pp. 79-90.
  • IRANNAJAD, M., MESHKINI, M., AZADMEHR, A.R., 2013. Leaching of zinc from low grade oxide ore using organic acid. Physicochemical Problems of Mineral Processing, 49(2), 547-555.
  • JIN, Y., ZENG, C., LÜ, Q.-F., YU, Y., 2019, Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicylic acid modified lignin. International Journal of Biological Macromolecules, 123, 50-58.19 Physicochem. Probl. Miner. Process., 57(3), 2021, 8-20
  • LI, J., GAO, Y., GAO, Y., CHEN, Z., WANG, R., XU, Z., 2020. Study on aluminum removal through 5-sulfosalicylic acid targeting complexing and D290 resin adsorption. Minerals Engineering, 147, 106175.
  • LI, Y., LIU, H., PENG, B., MIN, X., HU, M., PENG, N., YUANG, Y., LEI, J., 2015. Study on separating of zinc and iron from zinc leaching residues by roasting with ammonium sulphate. Hydrometallurgy, 158, 42-48.
  • LIN, H.B., LIAO, Z.Q., DAI, Y.H., WANG, Y.Y., GUO, H.X., 2018. Design of multiple efficient molecular logic devices based on molecular systems containing bovine serum albumin and 5-sulfosalicylic acid. Sensors and Actuators B: Chemical, 273, 672-680.
  • LIU, C., ZHENG, Y.F., YANG, S.Y., FU, W., CHEN, X., 2021. Exploration of a novel depressant polyepoxysuccinic acid for the flotation separation of pentlandite from lizardite slimes. Applied Clay Science, 202, 105939.
  • LIU, X., WANG, J., GHENI, A., ELGAWADY, M.A., 2018. Reduced zinc leaching from scrap tire during pavement applications. Waste Management, 81, 53-60.
  • LUO, M.-J., LIU, C.-L., XUE, J., LI, P., YU, J.-G., 2017. Leaching kinetics and mechanism of alunite from alunite tailings in highly concentrated KOH solution. Hydrometallurgy, 174, 10-20.
  • MADAKKARUPPAN, V., PIUS, A., T, S., GIRI, N., SARBAJNA, C., 2016. Influence of microwaves on the leaching kinetics of uraninite from a low grade ore in dilute sulfuric acid. J. Hazard. Mater., 313, 9-17.
  • MAHEDI, M., CETIN, B., DAYIOGLU, A.Y., 2019. Leaching behavior of aluminum, copper, iron and zinc from cement activated fly ash and slag stabilized soils. Waste Management, 95, 334-355.
  • Mamo, S.K., Elie, M., Baron, M.G., Simons, A.M., GONZALEZ-RODRIGUEZ, J., 2019. Leaching kinetics, separation, and recovery of rhenium and component metals from CMSX-4 superalloys using hydrometallurgical processes. Separation and Purification Technology, 212, 150-160.
  • MU, W.N., LU, X.Y., CUI, F.H., LUO, S.H., ZHAI, Y.C., 2018. Transformation and leaching kinetics of silicon from lowgrade nickel laterite ore by pre-roasting and alkaline leaching process. Transactions of Nonferrous Metals Society of China, 28(1), 169-176.
  • NIE, W., WEN, S., FENG, Q., LIU, D., ZHOU, Y., 2020. Mechanism and kinetics study of sulfuric acid leaching of titanium from titanium-bearing electric furnace slag. Journal of Materials Research and Technology, 9(2), 1750-1758.
  • PING, A., XIA, W.C., PENG, Y.L., XIE, G.Y., 2021. Comparative filtration and dewatering behavior of vitrinite and inertinite of bituminous coal: Experiment and simulation study. International Journal of Mining Science and Technology, 31(2), 233-240.
  • RAO, S., YANG, T., ZHANG, D., LIU, W., CHEN, L., HAO, Z., XIAO, Q., WEN, J., 2015. Leaching of low grade zinc oxide ores in NH4Cl–NH3 solutions with nitrilotriacetic acid as complexing agents. Hydrometallurgy, 158, 101-106.
  • RU, Z.G., PAN, C.X., LIU, G.H., WANG, X.T., DOU, G.Y., ZHU, K.S., 2015. Leaching and recovery of zinc from leaching residue of zinc calcine based on membrane filter press. Transactions of Nonferrous Metals Society of China, 25(2), 622-627.
  • ŞAHIN, M., ERDEM, M., 2015. Cleaning of high lead-bearing zinc leaching residue by recovery of lead with alkaline leaching. Hydrometallurgy, 153, 170-178.
  • SEYED GHASEMI, S.M., AZIZI, A., 2018. Alkaline leaching of lead and zinc by sodium hydroxide: kinetics modeling. Journal of Materials Research and Technology, 7(2), 118-125.
  • WANG, L., SONG, S., GAO, H., WANG, L., YANG, S., LIU, C., 2020a, The optimization and characterization of the recycling utilization of raffinate in the copper leaching process. Journal of Materials Research and Technology, 9(2), 2214-2222.
  • WANG, W., TANG, B., WU, S., GAO, Z., JU, B., TENG, X., ZHANG, S., 2017. Controllable 5-sulfosalicylic acid assisted solvothermal synthesis of monodispersed superparamagnetic Fe3O4 nanoclusters with tunable size. Journal of Magnetism and Magnetic Materials, 423, 111-117.
  • WANG, Y., LI, J., GAO, Y., YANG, Y., GAO, Y., XU, Z., 2020b, Removal of aluminum from rare-earth leaching solutions via a complexation-precipitation process. Hydrometallurgy, 191, 105220.
  • XIAO, G., WEN, R., WEI, D., 2016. Effects of the hydrophobicity of adsorbate on the adsorption of salicylic acid and 5-sulfosalicylic acid onto the hydrophobic-hydrophilic macroporous polydivinylbenzene/polymethylacrylethyl-enediamine IPN. Fluid Phase Equilibria, 421, 33-38.
  • XU, T.Y., WANG, H., LI, J.M., ZHAO, Y.L., HAN, Y.H., WANG, X.L., HE, K.-H., WANG, A.-R., SHI, Z.-F., 2019. A water-stable luminescent Zn(II) coordination polymer based on 5-sulfosalicylic acid and 1,4-bis(1H-imidazol-1-yl)benzene for highly sensitive and selective sensing of Fe3+ ion. Inorganica Chimica Acta, 493, 72-80.
  • YANG, S., LI, C., WANG, L., 2017. Dissolution of starch and its role in the flotation separation of quartz from hematite. Powder Technology, 320, 346-357.20 Physicochem. Probl. Miner. Process., 57(3), 2021, 8-20
  • YANG, S., LI, H., SUN, Y., CHEN, Y., TANG, C., HE, J., 2016a. Leaching kinetics of zinc silicate in ammonium chloride solution. Transactions of Nonferrous Metals Society of China, 26(6), 1688-1695.
  • YANG, T., RAO, S., ZHANG, D., WEN, J., LIU, W., CHEN, L., ZHANG, X., 2016b. Leaching of low grade zinc oxide ores in nitrilotriacetic acid solutions. Hydrometallurgy, 161, 107-111.
  • ZHANG, C., MIN, X., ZHANG, J., WANG, M., LI, Y., FEI, J., 2016a. Reductive clean leaching process of cadmium from hydrometallurgical zinc neutral leaching residue using sulfur dioxide. Journal of Cleaner Production, 113, 910-918.
  • ZHANG, Y., HUA, Y., GAO, X., XU, C., LI, J., LI, Y., ZHANG, Q., XIONG, L., SU, Z., WANG, M., RU, J., 2016b. Recovery of zinc from a low-grade zinc oxide ore with high silicon by sulfuric acid curing and water leaching. Hydrometallurgy, 166, 16-21.
  • ZHOU, X., CHEN, Y., YIN, J., XIA, W., YUAN, X., XIANG, X., 2018. Leaching kinetics of cobalt from the scraps of spent aerospace magnetic materials. Waste Management, 76, 663-670.
  • ZHU, X., LIU, X., ZHAO, Z., 2019. Leaching kinetics of scheelite with sodium phytate. Hydrometallurgy, 186, 83-90
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfdd411b-c718-4c65-8459-f11212333465
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.