PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

RVC — reticulated vitreous carbon. Structure, precursor polymer materials, process of manufacturing and applications

Identyfikatory
Warianty tytułu
PL
RVC — retykulowany węgiel szklisty. Struktura, prekursory polimerowe, proces wytwarzania oraz zastosowanie
Języki publikacji
EN
Abstrakty
EN
In this paper the review of literature data concerning preparation, properties and applications of Reticulated Vitreous Carbon (RVC) is presented. Vitreous carbon is a kind of carbon material with specific structure which deviates from crystalline structure of graphite as it has various defects of graphene layers (gaps, five-part rings, interstitial atoms or hetero-atoms substituted instead of carbon atoms) without mutual orientation and fixed distance between layers. Such structure is called “turbostratic” and it is characteristic for materials obtained through carbonization (pyrolysis) of organic substances, usually organic polymers. Because of the orientation level of the packages of graphene layers, vitreous carbon, including RVC, belongs to the group of materials which do not graphitize at high temperature. Type of defects in vitreous carbon structure depends mostly on the choice of precursor material, its preparation and type and method of its processing. In this paper some examples of the most frequently used RVC precursors (e.g. furfuryl resin, phenol-formaldehyde resin) and the methods of RVC preparation starting from the basic framework that is the 100% open-cell polyurethane foam (so called “reticulated foam”). Methods of restructuring the standard commercial polyurethane foam to get the reticulated foam suitable for RVC preparation (i.e. reticulation” methods) are described. The process of impregnation of reticulated foam thus obtained with resins and curing the resulting composite as well as stages of thermal processing leading to carbonization are also discussed. Due to specific properties (high specific surface, thermal and electrical conductivity and good mechanical strength) RVC is presently applied in electrochemistry, medicine or metallurgy. Other forms of vitreous carbons comprise Monolithic Vitreous Carbon (MVC) and Cellular Vitreous Carbon (CVC) — the latter can be applied as sound-absorbing material.
PL
W artykule przedstawiono przegląd danych literaturowych dotyczących otrzymywania, właściwości i zastosowania retykulowanego węgla szklistego (Reticulated Vitreous Carbon — RVC, węgiel szklisty o strukturze szkieletowej). Węgiel szklisty to materiał węglowy o specyficznej strukturze wykazującej odchylenia od krystalicznej struktury grafitu, w postaci warstw grafenowych zdefektowanych przez występowanie luk, pierścieni pięcioczłonowych, atomów międzywęzłowych i heteroatomów, bez wzajemnej orientacji oraz ustalonej odległości od siebie. Strukturę tę określa się mianem „turbostratycznej” i jest ona typowa dla materiałów otrzymywanych na drodze karbonizacji (pirolizy) substancji organicznych, zazwyczaj polimerów organicznych. Ze względu na poziom orientacji pakietów warstw grafenowych węgiel szklisty, także retykulowany, należy do materiałów niegrafityzujących w wysokiej temperaturze.
Rocznik
Strony
81--94
Opis fizyczny
Bibliogr. 107 poz., fig., tab.
Twórcy
autor
  • Industrial Chemistry Research Institute, Warsaw, Poland
  • Industrial Chemistry Research Institute, Warsaw, Poland
  • Industrial Chemistry Research Institute, Warsaw, Poland
  • Industrial Chemistry Research Institute, Warsaw, Poland
Bibliografia
  • [1] Kierzek K.: Materiały węglowe aktywowane wodorotlenkiem potasu. Rozprawa doktorska, Politechnika Wrocławska (2006).
  • [2] Bokros J. C.: Deposition, structure and properties of pyrolytic carbon.Chem. Phys. Carbon 5 (1969) 1÷118.
  • [3] Edwards J. A. S.: Structure in carbons and carbon forms. In: Marsh H.(ed.): Introduction to Carbon Science. Butterworths & Co., London (1989)1÷36.
  • [4] Wang Z., Lu Z., Huang Y., Xue R.: Characterizations of crystalline structure and electrical properties of pyrolyzed polyfurfuryl alcohol. J. Appl.Phys. 82 (1997) 5705÷5710.
  • [5] Dasgupta K., Sathiyamoorthy D.: Disordered carbon — its preparation, structure, and characterization. Mater. Sci. Technol. 19/8 (2003) 995÷1002.
  • [6] Takai K., Ogato M., Sato H.: Structure and electronic properties of a nongraphitic disordered carbon system and its heat-treatment effects. Phys. Rev. B 67 (2003) 214÷202.
  • [7] Harris P. J. F.: Structure of non-graphitizing carbons. Int. Mater. Rev. 42/5(1997) 206÷218.
  • [8] C. B. Gaefke, E. C. Botelho: Effect of furfuryl alcohol addition on the cure of furfuryl alcohol resin used in the glassy carbon manufacture. J. Braz. Chem. Soc. 106 (2007) 2274÷2281.
  • [9] Teng H., Wang S. C.: Preparation of porous carbons from phenol–form-aldehyde resins with chemical and physical activation. Carbon 38 (2000)817÷824.
  • [10] Myalski J., Hekner B.: Materiały kompozytowe o osnowie stopu aluminium umacniane pianami ceramicznymi. Inżynieria Materiałowa Materials Engineering 5 (2015) 220÷223.
  • [11] Friedrich J. M., Ponce-De-Leon C., Reade G. W., Walsh F. C.: Reticulated vitreous carbon as an electrode material. J. Electroanalyt. Chem. 561(2004) 203÷217.
  • [12] Pletcher D., Walsh F. C.: Three dimensional electrodes. Electrochemical technology for a cleaner environment. The Electrosynthesis Co., Lancaster, New York (1992) 52÷100.
  • [13] Chakhovskoi A. G., Hunt C. E.: Reticulated vitreous carbon field emission cathodes for light source applications. J. Vac. Sci. Technol. B 21 (2003)571÷575.
  • [14] Wang J.: Reticulated vitreous carbon: a new versatile electrode material. Electrochim. Acta 26 (1981) 1721÷1726.
  • [15] Oishi S. S., Rezende M. C., Origo F. D., Damião A. J., Botelho E. C.: Viscosity, pH, and moisture effect in the porosity of poly(furfuryl alcohol). J. App. Polym. Sci. 128/3 (2013) 1680÷1686.
  • [16] Pesin L. A.: Structure and properties of glass-like carbon, J. Mater. Sci.37 (2002) 1÷28.
  • [17] Kumar A., Lobo R. F., Wagner N. J.: Porous amorphous carbon models from periodic Gaussian chains of amorphous polymers. Carbon 43 (2005)3099÷3111.
  • [18] Smith M. A., Foley H. C., Lobo R. F.: A simple model describes the PDF of a non-graphitizing carbon. Carbon 42 (2004) 2041÷2048.
  • [19] Burket C. L., Rajagopalan R., Marencic A. P., Dronvajjala K., Foley H. C.:Genesis of porosity in polyfurfuryl alcohol derived nanoporous carbon. Carbon 44/14 (2006) 2957÷2963.
  • [20] Ferrari P. E., Rezende M. C.: Carbono polimérico: processamento e aplicação. Polimeros 6 (1998) 35÷42.
  • [21] Zhang S., Solomon D. H.: Carbonization reactions in novolac resins, hexamethylenetetramine and furfuryl alcohol mixtures. Chem. Mater. 11(1999) 384÷391.
  • [22] Oishi S. S., Botelho E. C., Rezende M. C.: Synthesis and characterization of polyarylacetylene for use in the monolithic vitreous carbon processing. Polímeros 24/5 (2014) 541÷546.
  • [23] Eber S., Jenkins R. G., Derbyshire F. J.: Carbonization of cocker feed stocks and their friction. Carbon 24/1 (1986) 77÷82.
  • [24] Jenkins J. C, Jenkins G. M.: Graphite produced by physical fractionation of a petroluem residue pyrolisate. Carbon 23/1 (1985) 6572.
  • [25] Amaral-Labat G., Gourdon E.: Improving the sound absorption ability of vitreous carbon foams. Annual World Conference – Carbon, Rio (2013).
  • [26] Li X., Basso M. C.: Tailoring the structure of cellular vitreous carbon foams. Carbon 50 (2012) 2026÷2036.
  • [27] Watson G. A.: Hydrodynamic reticulation of polyurethane foam. U.S. Patent No. 3862282 (1969).
  • [28] Geen H. C.: Process for the preparation of reticulated materials. U.S. Patent No. 3175030 (1963).
  • [29] Peters T. V.: Process of reticulating polyurethane foams. U.S. Patent No.US3475525 (1969).
  • [30] Geen H. C., Warren A Rice.: Process for bonding and/or reticulation. U.S. Patent No. 3175025 (1963).
  • [31] Sutton R. G.: Liquid reticulation of polyurethane foams. U.S. Patent No.3423337 (1969).
  • [32] Sutton R. G.: Catalysed liquid reticulation of polyurethane foams. U.S. Patent No. 3423338 (1969).
  • [33] Lox W., Petrich W.: Reticulated polyurethane foam and method of making same. U.S. Patent No. 3753756 (1971).
  • [34] Otani S. Oya A.: Glasses and amorphous materials. In: Cahn R. W. (ed.):Materials science and technology — A comprehensive treatment. Wiley,New York 9 (1991).
  • [35] Rezende M. C., Weyne G. R. S., Polidoro H. A.: Estudo da obtençãode carbono vítreo utilizando diferentes resinas termofixas. Anais do 10CBECIMAT (1992) 52.
  • [36] Vinton S. C., Franklin C. H.: Activated reticulated or unreticulated carbonstructures. U.S. Patent No. 4154704 (1979).
  • [37] Bertazzoli R., Widner R. C., Lanza M. R. V.: Electrolytic removal of metalsusing a flow-through cell with a reticulated vitreous carbon cathode. J.Braz. Chem. Soc. 8 (1997) 487÷493.
  • [38] Nielsen L. E., Landel R. F.: Mechanical properties of polymers and composites.2nd edition, Marcel Dekker, New York (1994).
  • [39] Gandini A., Belgacem M. N.: Furans in polymer chemistry. Prog. PolymSci. 22 (1997) 1203÷1379.
  • [40] Iwashita N., Swain M. V., Field J. S., Ohta N., Bitoh S.: Elasto-plastic deformation of glass-like carbons heat-treated at different temperatures. Carbon 39 (2001) 1525÷1532.
  • [41] Vinton S. C., Franklin C. H.: Method for preparation of vitreous carbon foams. U.S. Patent No. 4022875 (1975).
  • [42] Piasecka-Herud A., Kossobudzka H.: Sposób wytwarzania węglowego tworzywa porowatego. PL Patent No. 109337 (1977).
  • [43] Principe M., Martinez R., Ortiz P., Rieumont J.: The polymerization of furfuryl alcohol with p-toluene sulfonic acid: photocross-linkable feature of the polymer. Polimeros: Ciencia e Tecnologia 10 (2000) 8÷14.
  • [44] Botelho E. C., Scherbakoff N., Rezende M. C.: Porosity control in glassy carbon by rheological study of the furfuryl resin. Carbon 39 (2001) 45÷52.
  • [45] Botelho E. C., Scherbakoff N., Rezende M. C.: Rheological analysis of the phenolic and furfuryl resins used in the carbon materials processing, Mater. Res. 3 (2000) 19.
  • [46] Savage G.: Carbon–carbon composites. Chapman & Hall, London (1993)84.
  • [47] Downing P. A.: Glass fibre reinforced furan resins. The Chemical Engineer April (1978) 272÷274.
  • [48] Dunlop A. P., Reineck E. A.: Furfuryl alcohol resins. The Furans. Proc.Tech. Conf. Am. Chem. Soc., Chicago Sect., North Western Univ., 24(1947).
  • [49] Flewett P. E. J., Wild R. K.: Physical methods for materials characterization. IOP Publishing, Philadelphia (1994) 28.
  • [50] Bird R. B., Hassager O., Armstrong R.: Dynamics of polymeric liquids —Fluid Mechanics. 2nd ed., Wiley 1 (1987).
  • [51] Gallego N. C., Klett J. W.: Carbon foams for thermal management. Carbon41 (2003) 1461÷1466.
  • [52] Pierson H. O.: Handbook of carbon, graphite, diamond and fullerenes: properties, processing and applications. Materials Science and Process Technology. Noyes Publications, New Jersey, USA (1993).
  • [53] Pilato L.: Phenolic resins: A century of progress. Springer-Verlag, Berlin(2010).
  • [54] Bhatia G., Aggarwal R. K., Malik M.: Conversion of phenol phormaldehyderesin to glass-like carbon. J. Mat. Sci. 19 (1984) 1022÷1028.
  • [55] Liaw D. J., Wang K. L.: Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 37 (2012) 907÷974.
  • [56] Georgiev A., Dimov D., Spassova E., Assa J., Dineff P., Danev G.: Chemicaland physical properties of polyimides: biomedical and engineering applications. In: Marc J. M. Abadie (ed.): High performance polymers– polyimides based – from chemistry to applications. InTech Publisher,Croatia (2012).
  • [57] Inagaki M., Morishita T., Kuno A.: Carbon foams prepared from polyimide using urethane foam template. Carbon 42/3 (2004) 497÷502.
  • [58] Bessonov M. I., Koton M. M., Kudryavtsev V. V., Laius L. A.: Polyimides thermally stable polymers. NY Consultants Bureau, Plenum Publishing(1987) 101÷164.
  • [59] Liaw D. J., Chang F. C,. Leung M. K., Chou M. Y., Muellen K.: High thermal stability and rigid rod of novel organosoluble polyimides and polyamides based on bulky and noncoplanar naphthalene-biphenyldiamine. Macromolecules 38/9 (2005) 4024÷4029.
  • [60] Vinton S. C., Franklin C. H.: Method for the preparation of carbon structures. U.S. Patent No. 3927186 (1975).
  • [61] Manocha S. M., Patel K. A., Manocha L. M.: Development of carbon foam from phenolic resin via template route. Indian J. Eng. Mater. Sci. 17 (2010)338÷342.
  • [62] Bilbao R., Mastral J. F., Ceamanos J., Aldea M. E.: Kinetics of the thermal decomposition of polyurethane foams in nitrogen and air atmosphere. J. Anal. Appl. Pyrolysis. 37 (1996) 68÷82.
  • [63] Yamashita Y., Ouchi K. A.: Study on carbonization of phenol-formalde-hyde resin labelled with deuterium and C13. Carbon 19 (1981) 89÷94.
  • [64] Hirose T., Fan T. X., Okabe T., Yoshimura M.: Effect of carbonizing speed on the property changes of wood ceramics impregnated with liquefacient wood. Mater. Lett. 52 (2002) 229÷233.
  • [65] Li G. B., Lu Z. H., Huang B. Y.: Raman-scattering investigation of carbons obtained by heat-treatment of a polyfurfuryl alcohol. Solid State Ionics 89(1996) 327÷331.
  • [66] Myalski J.: Kształtowanie właściwości tribologicznych kompozytów zawierających węgiel szklisty. Wydawnictwo Politechniki Śląskiej, Gliwice(2011).
  • [67] Yudin V. E., Goykhman M. Ya., Balikb K., Glogarb P.: Carbonization behavior of some polyimide resins reinforced with carbon fibers. Carbon38 (2000) 5÷12.
  • [68] Inagaki M., Kang F., Toyoda M., Konno H.: Advanced materials science and engineering of carbon. Butterworth-Heinemann Publishers. Elsevier. Oxford (2014) 199.
  • [69] Inagaki M., Ibuki T., Takeichi T.: Carbonization behavior of polyimide films with various chemical structures. J. Appl Polym Sci. 44 (1992) 521÷525.
  • [70] Hatori H., Yamada Y., Shiraishi M., Yoshihara M., Kimura T.: The mechanism of polyimide pyrolysis in the early stage. Carbon 34 (1996) 201.
  • [71] Hishiyama Y., Igarashi K., Kanaoka I., Fujii H., Kaneda T., KoidesawaT., Shimazawa Y., Yoshida A.: Graphitization behavior of Kapton-derivedcarbon film related to structure, microtexture and transport properties. Carbon 35 (1997) 657.
  • [72] Konno H., Nakahashi T., Inagaki M.: State analysis of nitrogen in carbon film derived from polyimide Kapton. Carbon 35 (1997) 669.
  • [73] Takeichi T., Eguchi Y., Kaburagi Y., Hishiyama Y., Inagaki M.: Carbonization and graphitization of Kapton-type polyimide films prepared from polyamide alkyl ester. Carbon 36 (1998) 117÷122.
  • [74] Inagaki M., Morishita T., Kuno A.: Carbon foams prepared from polyimide using urethane foam template. Carbon 42 (2004) 497÷502.
  • [75] Inagaki M., Ohta N., Hishiyama Y.: Aromatic polyimides as carbon precursors. Carbon 61 (2013) 1÷21.
  • [76] Inagaki M., Harada S., Sato T., Nakajima T., Horino Y., Morita K.: Carbonization of polyimide film — Kapton. Carbon 27 (1989) 253÷257.
  • [77] Tentorino A., Casolo-Ginelli U.: Characterization of reticulate, three-dimensional electrodes. J. Appl. Electrochem. 8/3 (1978) 195÷205.
  • [78] Pec M. K., Reyes R., Sánchez E.: Reticulated vitreous carbon: a useful material for cell adhesion and tissue invasion. Eur. Cell. Mater. 20 (2010) 282÷294.
  • [79] Kent B. L., Mutharasan R.: Cultivation of animal cells in a reticulated vitreous carbon foam. J. Biotechnol. 22 (1992) 311÷328.
  • [80] Zardiackas L. D., Parsell D. E., Dillon L. D., Mitchell D. W., Nunnery L.A., Poggie R. J: Structure, metallurgy and mechanical properties of a porous tantalum foam. J. Biomed. Mater. Res. 58 (2001) 180÷187.
  • [81] Wigfield C., Robertson J., Gill S., Nelson R.: Clinical experience with porous tantalum cervical inter body implants in a prospective randomized controlled trial. British J. Neuro. 17 (2003) 418÷425.
  • [82] Komarasamy B., Vadivelu R., Bruce A., Kershaw C., Davison J.: Clinicaland radiological outcome following total hip arthroplasty with an uncemented trabecular metal monoblock acetabular cup. Acta Orthop. Belg.72 (2006) 320÷325.
  • [83] Mulier M., Rys B., Moke L.: Hedrocel trabecular metal monoblock acetabularcups: mid-term results. Acta Orthop. Belg. 72 (2006) 326÷331.
  • [84] Czerwiński A., Obrębowski Sz., Rogulski Z.: New high-energy lead-acid battery with reticulated vitreous carbon as a carrier and current collector.J. Power Sources 198 (2012) 378÷382.
  • [85] Czerwiński A.: Sposób galwanicznego nanoszenia ołowiu i tlenku ołowiu(IV) na przewodzące materiały węglowe. PL Patent No. 167796 (1995).
  • [86] Czerwiński A., Żelazowska M.: Elektroda z ołowiu lub tlenku ołowiu. PLPatent No. 178258 (2000).
  • [87] Czerwiński A., Żelazowska M.: Akumulator ołowiowy. PL Patent No.180939 (2001).
  • [88] Żelazowska-Zakrent M., Czerwiński A.: Electrochemical-behavior of leaddeposited on reticulated vitreous carbon. J. Electroanal. Chem. 410 (1996)53÷60.
  • [89] Paleska I., Pruszkowska-Drachal R., Kotowski J., Rogulski Z., MilewskiJ. D., Czerwiński A.: Electrochemical behaviour of barium metaplumbateas a lead carrier. J. Power Sources 129 (2004) 326÷329.
  • [90] Czerwiński A., Rogulski Z., Siwek H., Obrębowski S., Paleska I., ChotkowskiM., Łukaszewski M.: Porous glassy carbon modified with metals and their oxides as electrode material in batteries. J. Appl. Electrochem.39 (2009) 559÷569.
  • [91] Rogulski Z., Lewdorowicz W., Tokarz W., Czerwiński A.: Application of reticulated vitreous carbon (RVC) in the electrochemical power sources. Pol. J. Chem. 78 (2004) 1357÷1370.
  • [92] Gyenge E., Jung J., Mahato B. J.: Electroplated reticulated vitreous carbon current collectors for lead-acid batteries: opportunities and challenges. Power Sources 113 (2003) 388÷393.
  • [93] Liu P. S., Chen G. F.: Porous material. Processing and applications. 1st ed. Butterworth-Heinemann Ltd. (2014).
  • [94] Sepulveda P.: Gel casting foams for porous ceramics. Am. Ceram. Soc.Bull. 76/10 (1997) 61÷65.
  • [95] Hirschfeld D. A., Li T. K., Liu D. M.: Processing of porous oxide ceramics. Key Eng. Mater. 115 (1996) 65÷80.
  • [96] Zhang Y. M., Liu D. K., Han J. C., Hao X. D.: Progress in fabrication of porous ceramics. Ord. Mat. Sci. Eng. 25/2 (2002) 62÷67.
  • [97] Fay III T. F., La Ferla R.: Foam catalyst support for exhaust purification.U.S. Patent No. 6040266 A (1994).
  • [98] Fanton M. A., Snyder D. W., Skowronski M.: Method and apparatus for the chemical vapor deposition of materials. U.S. Patent No. 2005/0255245A1 (2005).[99] Ultramet Corporation, http://www.ultramet.com/refractoryopencells_ceramic.html.
  • [100] Almajali M.: Engineered carbon foam for temperature control applications.Ph. D. thesis, University of Dayton, May (2010).
  • [101] ERG Materials and Aerospace Corporation, http://www.ergaerospace.com/Copper-properties.htm.
  • [102] Dullien F. A. L.: Method and apparatus for separating droplets for particles from a gas stream. U.S. Patent No. 6238464 B1 (1997).
  • [103] Muehleisen R. T., Beamer W. IV, Tianov B.: Measurements and empirical model of the acoustic properties of reticulated vitreous carbon. J. Acoust.Soc. Am. 2 (2005) 117.
  • [104] Amaral-Labat G., Gourdon G., Fierro V.: Acoustic properties of cellular vitreous carbon foams. Carbon 58 (2013) 76÷86.
  • [105] Adeff J. A., Hofler T. J., Atchley A. A., Moss W. C.: Measurements with reticulated vitreous carbon stacks thermo acoustic prime movers and refrigerators.J. Acoust. Soc. Am. 104 (1998) 32÷38.
  • [106] Celzard A., Zhao W., Pizzi A., Fierro V.: Mechanical properties of tannin based rigid foams undergoing compression. Mater. Sci. Eng A 527 (2010)4438÷4446.
  • [107] Szczurek A., Fierro V., Pizzi A., Stauber M., Celzard A.: Carbon meringues derived from flavonoid tannins. Carbon 65 (2013) 214÷227.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfd5a3c0-0b4a-4d48-8d1b-ebcc2476c833
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.