Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper described the experimental findings of underwater wet welding of E40 steel using self-shielded flux-cored wire with a TiO2 -FeO-MnO slag system. The arc stability, weld quality and corrosion resistance with different heat inputs were studied. The results showed that the wet welding process of the designed wire displayed good operability in the range of investigated parameters. The microstructure and mechanical properties of the weld metal depended on the heat input. Due to the high fraction of acicular ferrite in the weld metal, the mechanical properties of the weld metal under low heat input had better tensile strength and impact toughness. Fracture morphologies at low heat input had uniform and small dimples, which exhibited a ductile characteristic. The diffusible hydrogen content in the deposited metal obtained at a heat input of 26 kJ/cm significantly reduced to 14.6 ml/100g due to the combined effects of Fe2 O3 addition and the slow solidification rate of molten metal. The microstructure also had a significant effect on the corrosion resistance of the weld metal. The weld metal with high proportions of acicular ferrite at low heat input exhibited the lowest corrosion rate, while the base metal possessed a reduced corrosion resistance. These results were helpful to promote the application of low alloy high strength steel in the marine fields.
Czasopismo
Rocznik
Tom
Strony
100--109
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Jiangsu University 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013 ZhenJiang
- Harbin Institute of Technology 92 Xi Da Zhi Jie, Nangang Qu, Harbin 150001 Harbin China
autor
- Jiangsu University 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013 ZhenJiang China
autor
- Jiangsu University 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013 ZhenJiang China
autor
- Peter the Great St. Petersburg Polytechnic University St. Petersburg, Polytechnicheskaya, 29 195251 St. Petersburg Russia
autor
- Harbin Institute of Technology 92 Xi Da Zhi Jie, Nangang Qu, Harbin 150001 Harbin China
autor
- Jiangsu University 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013 ZhenJiang China
Bibliografia
- 1. G. Rogalski, D. Fydrych, and J. Łabanowski, “Underwater wet repair welding of API 5L X65M pipeline steel”, Polish Maritime Research, special issue S1 (93), vol. 24, pp. 188-194, 2017, doi: 10.1515/pomr-2017-0038.
- 2. D. Fydrych, J. Łabanowski, and G. Rogalski, “Weldability of high strength steels in wet welding conditions”, Polish Maritime Research, vol. 20, no. 2, pp. 67-73, 2013, doi: 10.2478/ pomr-2013-0018.
- 3. M. Rowe and S. Liu, “Recent developments in underwater wet welding”, Science and Technology of Welding and Joining, vol. 6, no. 6, pp. 387-396, 2001, doi: 10.1179/stw.2001.6.6.387.
- 4. S. Y. Maksimov, “Development of MMA electrodes for manual underwater welding in all spatial positions of steels”, In: International seminar and workshop on underwater wet welding and cutting, Middlesbrough, UK, April 17-18, 1997, pp. 32-44, doi: 10.1533/9780857093165.30.
- 5. L. O. Vilarinho, B. Lucas and S. Raghunathan, “Initial trials of underwater wet welding using mechanised FCAW process”, In: Proceedings of the 20th International Congress of Mechanical Engineering, Gramado, RS, Brazil November 15-20, 2009, pp.15-20. Available: https://www.abcm.org.br/ anais/cobem/2009/pdf/COB09-0213.
- 6. H. Chen, N. Guo, L. Huang, J. C. Feng, and G. D. Wang, “Effects of arc bubble behaviors and characteristics on droplet transfer in underwater wet welding using in-situ imaging method”, Materials & Design, vol. 170, p. 107696. 2019, doi: 10.1016/j.matdes.2019.107696
- 7. Y. L. Fu, N. Guo, Y. P. Du, H. Chen, C. S. Xu, and J. C. Feng, “Effect of metal transfer mode on spatter and arc stability in underwater flux-cored wire wet welding”, Journal of Manufacturing Processes, vol. 35, pp. 161-168, 2018, 10.1016/j.jmapro.2018.07.027.
- 8. J. F. Wang, Q. J. Sun, S. Zhang, C. J. Wang, and J. C. Feng, “Characterization of the underwater welding arc bubble through a visual sensing method”, Journal of Materials Processing Technology, vol. 251, pp. 95-108, 2018, doi: 10.1016/j.jmatprotec.2017.08.019.
- 9. C. B. Jia, Y. Zhang, B. Zhao, J. K. Hu, and C.S. Wu, “Visual sensing of the physical process during underwater wet FCAW”, Welding Journal, vol. 95, no. 6, pp. 202-209, 2016, doi: 10.29391/2016.99.006
- 10. H. Chen, N. Guo, K. X. Xu, C. Liu, and G.D. Wang, “Investigating the advantages of ultrasonic-assisted welding technique applied in underwater wet welding by in-situ X-ray imaging method”, Materials, vol. 13, no. 6, pp. 1442, 2020, doi: 10.3390/ma13061442.
- 11. J. F. Wang, Q. J. Sun, L. J. Wu, Y. B. Liu, J. B. Teng, and J. C. Feng, “Effect of ultrasonic vibration on microstructural evolution and mechanical properties of underwater wet welding joint”, Journal of Materials Processing Technology, vol. 246, pp. 185-197, 2017, doi: 10.1016/j.jmatprotec.2017.03.019.
- 12. C. B. Jia, J. Wu, Y. F. Han, Y. Zhang, Q. Y. Yang, and C. S. Wu, “Underwater Pulse-Current FCAW-Part 1: Waveform and Process Features”, Welding Journal, vol. 99, no. 5, pp.135-145, 2020, doi: 10.29391/2020.99.005
- 13. N. Guo, Y. P. Du, S. Maksimov, J. C. Feng, and Z. Q. Yin, “Study of metal transfer control in underwater wet FCAW using pulsed wire feed method”, Welding in the World, vol. 62, no. 1, pp. 87-94, 2018, doi: 10.1007/s40194-017-0497-y.
- 14. D. Fydrych, A. Świerczyńska, G. Rogalski, J. Łabanowski, “Temper bead welding of S420G2+ M steel in water environment”, Advances in Materials Science, vol. 16, no. 4, pp. 5-14, 2016, doi: 10.1515/adms-2016-0018.
- 15. E. C. P. Pessoa and S. Liu, “The State of the Art of Underwater Wet Welding Practice: Part 2”, Welding Journal, vol. 100, pp. 171-182, 2021, doi: 10.29391/2021.100.014
- 16. E. C. Amaral, A. M. Moreno-Uribe, and A. Q. Bracarense, “Effects of PTFE on operational characteristics and diffusible H and O contents of weld metal in underwater wet welding”, Journal of Manufacturing Processes, vol. 61, pp. 270-279, 2021, doi: 10.1016/j.jmapro.2020.11.018
- 17. H. L. Li, D. Liu, Y. T. Yan, N. Guo, and J. C. Feng, “Microstructural characteristics and mechanical properties of underwater wet flux-cored wire welded 316L stainless steel joints”, Journal of Materials Processing Technology, vol. 238, pp. 423-430, 2016, doi: 10.1016/j.jmatprotec.2016.08.001.
- 18. A. M. Brydon, and J. H. Nixon, “An investigation into underwater wet welding using the flux cored arc welding process”, In: International conference on offshore mechanics and arctic engineering, Copenhagen (Denmark), June 18-22, 1995, available: https://www.osti.gov/biblio/205448
- 19. H. L. Li, D. Liu, Y. Y. Song, Y. T. Yan, N. Guo, and J. C. Feng, “Microstructure and mechanical properties of underwater wet welded high-carbon-equivalent steel Q460 using austenitic consumables”, Journal of Materials Processing Technology, vol. 249, pp. 149-157, 2017, doi: 10.1016/j. jmatprotec.2017.06.009.
- 20. V. Y Kononenko, “Mechanised welding with self-shielding, flux-cored wires for repairing hydraulic installations and vessels in water”, Welding International, vol. 10, no. 12, pp. 994-997, 1996, doi: 10.1080/09507119609549127.
- 21. S. G Parshin, “Underwater wet FCA-welding of highstrength steel X70 through the use of flux-cored electrode”, Welding International, vol. 34, no. 1, pp. 24-28, 2020, doi: 10.1080/09507116.2021.1918470
- 22. H. L. Li, D. Liu, Y. T. Yan, N. Guo, Y. B. Liu, and J. C. Feng, “Effects of heat input on arc stability and weld quality in underwater wet flux-cored arc welding of E40 steel”, Journal of Manufacturing Processes, vol. 31, pp. 833-843, 2018, doi: 10.1016/j.jmapro.2018.01.013
- 23. X. Zhang, N. Guo, C. S. Xu, Y. P. Du, B. Chen, and J. C. Feng, “Influence of CaF2 on microstructural characteristics and mechanical properties of 304 stainless steel underwater wet welding using flux-cored wire”, Journal of Manufacturing Processes, vol. 45, pp. 138-146, 2019, doi: 10.1016/j. jmapro.2019.07.003
- 24. V. R. Santos, M. J. Monteiro, F. C. Rizzo, A. Q. Bracarense, E. C. P. Pessoa, and L. A. Vieira, “Development of an oxyrutile electrode for wet welding”. Welding Journal, vol. 91, no. 12, pp. 319-328, 2012, doi: 10.29391/2012.91.012
- 25. Y. Suga, “The Effect of Cooling Rate on Mechanical Properties of Underwater Wet Welds in Gravity Arc Welding”, Transaction of the Japan Welding Society, vol. 21, pp. 144-149, 1990, available: https://dl.ndl.go.jp/info:ndljp/pid/10945694
- 26. E. C. P. Pessoa, L. F. Ribeiro, and A. Q. Bracarense, “Arc stability indexes evaluation on underwater wet welding”, In: ASME 2010 29th International Conference on Offshore Mechanics and Arctic Engineering, Shanghai, China, June 6–11, 2010, pp. 195-201. doi: 10.1115/OMAE2010-20876
- 27. H. Terasaki and Y. Komizo, “In-situ observation of morphological development for acicular ferrite in weld metal”, Science and Technology of Welding and Joining, vol. 11, no. 5, pp.561-566, 2006, doi: 10.1179/174329306X149795.
- 28. J. F. Wang, J. K. Ma, Y. B. Liu, T. Zhang, S.C. Wu, and Q. J. Sun, “Influence of Heat Input on Microstructure and Corrosion Resistance of Underwater Wet-Welded E40 Steel Joints”, Journal of Materials Engineering and Performance, vol. 29, no. 11, pp. 6987-6996, 2020, doi: 10.1007/s11665-020-05160-7
- 29. R. A. Ricks, P. R. Howell, and G. S. Barritte, “The nature of acicular ferrite in HSLA steel weld metals”, Journal of Materials Science, vol. 17, no. 3, pp. 732-740, 1982, doi: 10.1007/BF00540369
- 30. Y. B. Guo, C. Li, Y. C. Liu, L. M. Yu, Z. Q. Ma and H. J. Li, “Effect of microstructure variation on the corrosion behavior of high-strength low-alloy steel in 3.5 wt% NaCl solution”, International Journal of Minerals, Metallurgy, and Materials, vol. 22, no. 6, pp. 604-612, 2015, doi: 10.1007/ s12613-015-1113-z.
- 31. S. Y. Shin, B. Hwang, S. Lee, and N. Kim, “Correlation of microstructure and Charpy impact properties in API X70 and X80 line-pipe steels”, Materials Science and Engineering: A, vol. 458, no.1, pp. 281-289, 2007, doi: 10.1016/j. msea.2006.12.097.
- 32. R. C. De Medeiros and S. Liu, “A predictive electrochemical model for weld metal hydrogen pickup in underwater wet welds”, Journal of Offshore Mechanics and Arctic Engineering, vol. 120, no. 4, pp. 243-248, 1998, doi: 10.1115/1.2829547
- 33. J. Du Plessis and M. Du Toit, “Reducing diffusible hydrogen contents of shielded metal arc welds through addition of fluxoxidizing ingredients”, Journal of Materials Engineering and Performance, vol. 17, no. 1, pp. 50-56. 2008, doi: 10.1115/1.2829547.
- 34. J. Tomków, J. Łabanowski, and D. Fydrych, “Cold cracking of S460N steel welded in water environment”, Polish Maritime Research, vol. 25, no. 3, pp. 131-136, 2018, doi: 10.2478/ pomr-2018-0104
- 35. J. Łabanowski, D. Fydrych, G. Rogalski, “Underwater Welding–a review”, Advances in materials Science, vol. 8 no.3, pp. 11-22, 2008, doi: 10.2478/v10077-008-0040-3
- 36. K. Sun, Y. Hu, Y. Shi, and B. Liao, “Microstructure Evolution and Mechanical Properties of Underwater Dry Welded Metal of High Strength Steel Q690E under Different Water Depths”, Polish Maritime Research, vol. 27, no. 4, 2020, doi: 10.2478/ pomr-2020-0071.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfd4619a-c5fa-451b-bae2-0c1981bf347c