PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of an adaptive fuzzy variable structure compensator for the nonholonomic mobile robot in trajectory tracking task

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A robust adaptive kinematic control strategy, based on the methodology of variable structure control is considered in this paper. Because the dynamics of mobile robots is subject to uncertainties and disturbances, a fuzzy compensator is adopted to estimate them. In order to minimize the tracking errors and to attenuate the chattering phenomenon, an adaptation law for the fuzzy compensator is obtained by Lyapunov stability theory so as to asymptotically stabilize the control system as well as guarantee the convergence of the tracking errors. In terms of comparison with the boundary layer variable structure controller, simulations and experiments verify the feasibility and effectiveness of the proposed kinematic control strategy for the nonholonomic mobile robots under the incidence of uncertainties and disturbances.
Rocznik
Strony
239--275
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • Departamento de Informatica, Universidade Estadual de Maringa - UEM, Programa de Pos-Gradua¸cao em Ciencia da Computa¸cao, Avenida Colombo, 5790, 87020-900, Maringa, PR, Brasil
autor
  • Departamento de Engenharia El´etrica, Universidade do Estado de Santa Catarina - UDESC, Rua Paulo Malschitzki, s/numero, 89219-710, Joinville, SC, Brasil
  • Universidade Federal de Santa Catarina - UFSC, Departamento de Automacao e Sistemas, Grupo de Pesquisa Robotica, Caixa Postal 476, 88040-900, Florianopolis, SC, Brasil
  • Departamento de Informatica, Universidade Estadual de Maringa - UEM, Programa de Pos-Gradua¸cao em Ciencia da Computa¸cao, Avenida Colombo, 5790, 87020-900, Maringa, PR, Brasil
Bibliografia
  • [1] BEGNINI, M., BERTOL, D. W. and MARTINS, N. A. (2017)A robust adaptive fuzzy variable structure tracking control for the wheeled mobile robot: simulation and experimental results. Control Engineering Practice 64, 27– 43.
  • [2] CHAUDHARI, S.R. and PATIL, M.E. (2014) A comparative analysis of fuzzy inference systems for air conditioner. International Journal of Advanced Computer Research, 4, 4, 922–927.
  • [3] CHAUDHARI, S.R. and PATIL, M.E. (2014) Study and review of fuzzy inference systems for decision making and control. American International Journal of Research Science, Technology, Engineeringand Mathematics, 5, 88–92.
  • [4] ELYOUSSEF, E.S., MARTINS, N.A., DE PIERI, E.R. and MORENO, U.F. (2014) Pd-super-twisting second order sliding mode tracking control for a nonholonomic wheeled mobile robot. In: Proceedings of the 19th World Congress of the International Federation of Automatic Control (IFAC World Congress), 11, 3827–3832.
  • [5] ERBATUR, K. and KAYNAK, O. (2001) Use of adaptive fuzzy systems in parameter tuning of sliding-mode controllers. IEEE/ASME Trans. Mechatronics, 6, 4, 474–482.
  • [6] FARRELL, J.A. and POLYCARPOU, M.M. (2006) Adaptive Approximation Based Control: Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches. 1st edition, John Wiley & Sons, Inc., Wiley-Interscience.
  • [7] FIERRO, R. and LEWIS, F.L. (1998) Control of a nonholonomic mobile robot using neural networks. IEEE Transactions on Neural Networks, 9, 4, 589– 600.
  • [8] FILIPESCU, A., MINZU, V., DUMITRASCU, B. and MINCA, E. (2011) Trajectory tracking and discrete-time sliding-mode control of wheeled mobile robots. In: Proceedings of the 2011 IEEE International Conference on Information and Automation (ICIA 2011). IEEE, 27–32.
  • [9] GUO, Y. and WOO, P.Y. (2003) An adaptive fuzzy sliding mode controller for robotic manipulators. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 33, 2, 149–159.
  • [10] KANAYAMA, Y., KIMURA, Y., MIYAZAKI, F. and NOGUCHI, T. (1991) A stable tracking control method for a non-holonomic mobile robot. In: Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems (IROS’1991). IEEE, 1236–1241.
  • [11] KAYNAK, O., ERBATUR, K. and ERTUGNRL, M. (2001) The fusion of computationally intelligent methodologies and sliding mode control - a survey. IEEE Transactions on Industrial Electronics, 48, 1, 4–17.
  • [12] KEIGHOBADI, J. and MENHAJ, M.B. (2012) From nonlinear to fuzzy approaches in trajectory tracking control of wheeled mobile robots. Asian Journal of Control, 14, 4, 960–973.
  • [13] KEIGHOBADI, J. and MOHAMADI, Y. (2011a) Fuzzy sliding mode control of a nonholonomic wheeled mobile robot. In: Proceedings of the 2011 International MultiConference of Engineers and Computer Scientists (IMECS ’2011). 2, 1–6.
  • [14] KEIGHOBADI, J. and MOHAMADI, Y. (2011b) Fuzzy sliding mode control of nonholonomic wheeled mobile robot. In: Proceedings of the 2011 IEEE 9th International Symposium on Applied Machine Intelligence and Informatics (SAMI’2011). IEEE, 273–278.
  • [15] KUNG, C.C. and CHEN, T.H. and KUNG, L.-H. (2005) Modified adaptive fuzzy sliding mode controller for uncertain nonlinear systems. IEICE Trans. Fundamentals, E88-A, 5, 1328–1334.
  • [16] KUNG, C.C. and CHEN, T.H. (2007) Hoo tracking-based adaptive fuzzy sliding mode controller design for nonlinear systems. IET Control Theory & Applications, 1, 1, 82–89.
  • [17] LEE, J.H., LIN, C., LIM, H. and LEE, J.M. (2009) Sliding mode control for trajectory tracking of mobile robot in the rfid sensor space. International Journal of Control. Automation and Systems, 7, 3, 429–435.
  • [18] LI, Y., QIANG, S., ZHUANG, X. and KAYNAK, O. (2004) Robust and adaptive backstepping control for nonlinear systems using rbf neural networks. IEEE Transactions on Neural Networks, 15, 3, 693–701.
  • [19] MARTINS, N.A., ALENCAR, M., LOMBARDI, W.C., BERTOL, D.W., DE PIERI, E.R. and FERASOLI FILHO, H. (2015) Trajectory tracking of a wheeled mobile robot with uncertainties and disturbances: proposed adaptive neural control. Control and Cybernetics, 44, 1, 47–98.
  • [20] MARTINS, N.A., ELYOUSSEF, E.S., BERTOL, D.W., DE PIERI, E.R., MORENO, U.F. and CASTELAN, E.B. (2010) Nonholonomic mobile robot with kinematic disturbances in the trajectory tracking: a variable structure controller. Learning and Nonlinear Models, 8, 1, 23–40.
  • [21] MISHRA, E.A. (2014) Trajectory tracking of differential drive wheeled mobile robot. International Journal on Mechanical Engineering and Robotics (IJMER’2014), 2, 2, 28–31.
  • [22] ORIOLO, G., DE LUCA, A. and VENDITTELLI, M. (2002) WMR control via dynamic feedback linearization: design, implementation, and experimental validation. IEEE Transactions on Control Systems Technology, 10, 6, 835–852.
  • [23] PARK, B.S., YOO, S.J., PARK, J.B. and CHOI, Y.H. (2009) Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Transactions on Control Systems Technology, 17, 1, 207–214.
  • [24] SPONG, M.W., HUTCHINSON, S. and VIDYASAGAR, M. (2006) Robot Modeling and Control. Wiley, New York.
  • [25] UTKIN, V.I. (1993) Sliding mode control design: Principles and applications to electric drives. IEEE Trans. Industrial Electronics, 40, 1, 23–36.
  • [26] UTKIN, V.I., GULDNER, J. and SHI, J. (2009) Sliding Mode Control in Electromechanical Systems, 34. CRC Press.
  • [27] WAI, R.J. (2007) Fuzzy sliding-mode control using adaptive tuning technique. IEEE Trans. Industrial Electronics, 54, l, 586–594.
  • [28] WANG, L.X. (1999) A Course in Fuzzy Systems and Control. Prentice-Hall Press, Englewood Cliffs, USA.
  • [29] WANG, S. and GAO, W. (1995) Robustness and invariance of variable structure systems with multiple inputs. In: Proceedings of the American Control Conference (ACC’1995). IEEE, 1, 1035–1039.
  • [30] XIE, M.J., LI, L.T. and WANG, Z.Q. (2012) Robust adaptive control of a wheeled mobile robot violating the pure nonholonomic constraint. In: Proceedings of the 10th World Congress on Intelligent Control and Automation (WCICA’2012). IEEE, 2706–2709.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfd1bf89-005a-4656-8047-a136b322f6a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.