PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of mechanical pre-treatment of wood biomasson drying rate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work presents the process of drying wood biomass after pre-treatment involving either debarkingor crushing. The biomass used for research came from a robinia species wood. The material was driedin free-convection, at the drying medium temperatures of 40, 50, 60, 70 and80◦C, respectively. Pre-treatment proved to have a significant impact on the drying rate, including the time required to reachmoisture content of 10%, essential to start further treatment of biomass for power industry purposes.It was found that debarked samples of robinia lost water more quickly than the crushed ones. Samplesthat did not undergo pre-treatment took the longest time to dry.
Rocznik
Strony
95–--103
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Warsaw University of Life Sciences – SGGW, Faculty of Production Engineering,Department of Fundamental Engineering, Nowoursynowska 164, 02-787 Warsaw, Poland
  • Warsaw University of Life Sciences – SGGW, Faculty of Production Engineering,Department of Fundamental Engineering, Nowoursynowska 164, 02-787 Warsaw, Poland
  • Warsaw University of Life Sciences – SGGW, Faculty of Production Engineering,Department of Fundamental Engineering, Nowoursynowska 164, 02-787 Warsaw, Poland
  • Warsaw University of Life Sciences – SGGW, Faculty of Production Engineering,Department of Fundamental Engineering, Nowoursynowska 164, 02-787 Warsaw, Poland
  • Warsaw University of Life Sciences – SGGW, Faculty of Production Engineering,Department of Fundamental Engineering, Nowoursynowska 164, 02-787 Warsaw, Poland
autor
  • Warsaw University of Life Sciences – SGGW, Faculty of Production Engineering,Department of Fundamental Engineering, Nowoursynowska 164, 02-787 Warsaw, Poland
Bibliografia
  • 1. Dudek M., Adamczyk B, Sitarz M., Śliwa M., Lach R, Skrzypkiewicz M., Raźnia A., Zįabka M., Zuwała J.,Grzywacz P., 2018. The usefulness of walnut shells as waste biomass fuels in direct carbon solid oxide fuel cells.Biomass Bioenergy, 119, 144–154. DOI: 10.1016/j.biombioe.2018.09.026.
  • 2. Głowacki Sz., Sojak M., Witek I., 2008. Badanie kinetyki suszenia robinii akacjowej (robinia pseudoacacia).Ciepłownictwo, Ogrzewnictwo, Wentylacja, 7–8, 23–24.
  • 3. Gołuchowska B., Sławiński J., Markowski G., 2015. Biomass utilization as a renewable energy source in Polishpower industry – current status and perspectives.J. Ecol. Eng., 16, 143–154. DOI: 10.12911/22998993/2948.
  • 4. Grünewald H., Böhm Ch., Quinkenstein A, Grundmann P., Eberts J., Wühlisch G., 2009.Robinia pseudoacaciaL.: A lesser known tree species for biomass production.BioEnergy Res., 2, 123–133. DOI: 10.1007/s12155-009-9038-x.
  • 5. Jin E., Sutherland W., 2018. An integrated sustainability model for a bioenergy system: Forest residues for electricitygeneration.Biomass Bioenergy, 119, 10–21. DOI: 10.1016/j.biombioe.2018.09.005.
  • 6. Kemp I.C., Fyhr B.C., Laurent S., Roques M.A., Groenewold C.E., Tsotsas E., Sereno A.A., Bonazzi C.B.,Bimbenet J.J., Kind M., 2001. Methods for processing experimental drying kinetics data.Drying Technol., 19,15–34. DOI: 10.1081/DRT-100001350.
  • 7. Kościk B. (Ed.), 2003.Rośliny energetyczne. Wyd. Akademii Rolniczej, Lublin, 146.
  • 8. Kowalski S., Pawłowski A., 2010. Aspekt energetyczny suszenia materiałów w stałych i okresowo zmiennychwarunkach.Inż. Ap. Chem., 49, 2, 71–72.
  • 9. Kowalski S., Pawłowski A., 2010. Drying of wood with air of variable parameters.Chem. Process Eng., 31,135–147.
  • 10. Li X.J., Zhang B.G., Li W.J., 2008. Microwave-vacuum drying of wood: model formulation and verification.DryingTechnol., 26, 1382-1387. DOI: 10.1080/07373930802333551.
  • 11. Lianbai G., 2007. Recent research and development in wood drying technologies in China.Drying Technol., 25,463–469. DOI: 10.1080/07373930601183900.
  • 12. Madaleno R.O., Castro L.M., Coelho Pinheiro M.N., 2017. Drying kinetics of granulated cork: Effect of air dryingstream conditions and granule size.Biomass Bioenergy, 107, 8–19. DOI: 10.1016/j.biombioe.2017.08.025.
  • 13. Minea V., 2008. Energetic and ecological aspects of softwood drying with high-temperature heat pumps.DryingTechnol., 26, 1373. DOI: 10.1080/07373930802333536.
  • 14. Niedziółka I., Szpryngiel M., Zaklika B., 2014. Possibilities of using biomass for energy purposes.AgriculturalEngineering, 1(149), 155–163.
  • 15. Niedziółka I., Zuchniarz A., 2006. Analiza energetyczna wybranych rodzajów biomasy pochodzenia roślinnego.Motorol., 8A, 232–237.
  • 16. Röser D., Mola-Yudego B., Sikanen L., Prinz, R. Gritten D., Emer B., Väätäinen K., Erkkilä A., 2011. Natural dryingtreatments during seasonal storage of wood for bioenergy in different European locations.Biomass Bioenergy, 35,4238–4247. DOI: 10.1016/j.biombioe.2011.07.011.
  • 17. Szczukowski S., Budny J., 2003.Wierzba krzewiasta – roślina energetyczna. Biblioteka praktycznego ekologa.Olsztyn.
  • 18. Zarea-Hosseinabadi H., Doosthoseini K., Layeghi M., 2012. Drying kinetics of poplar (Populus deltoides) woodparticles by a convective thin layer dryer.Drying Ind., 63, 169–176. DOI: 10.5552/drind.2012.1201.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfcf762e-5cfa-46a5-8456-4dee90e1b046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.