PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling and Identification Method of Bolt Loosening of Joint Surface under Axial Tension of Multistage Disk-Drum Rotor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Individual bolt at key connection positions is prone to loose when the engine is cycle-operating under complex loads. A joint surface equivalent stiffness model is derived and developed based on the connection characteristics of bolt screwing in the multi-exciting environment of the high-pressure rotor. The model is used to analyse the effect of bolt missing at circumferential positions with the equivalent stiffness loss. Vibration experiments under both axial force and lateral impact were carried out to obtain the dynamic response feature of the multistage disk-drum simulated rotor with missing one bolt at different positions. The Spearman correlation coefficient was applied to evaluate the identification effect of different measuring points on the bolt loosening position. The study shows that the eigenfrequencies of experimental results have a consistent trend with the equivalent stiffness variation caused by single bolt missing model. This method also provides a theoretical basis for the detection of bolt deviation position with multi-exciting vibration detection.
Rocznik
Strony
art. no. 165779
Opis fizyczny
Bibliogr. 32 poz., fot., rys., wykr.
Twórcy
autor
  • Logistics Engineering College, Shanghai Maritime University, Shanghai, China
  • Logistics Engineering College, Shanghai Maritime University, Shanghai, China
autor
  • Logistics Engineering College, Shanghai Maritime University, Shanghai, China
autor
  • AECC Commercial Aircraft Engine Co. LTD, Shanghai, China
autor
  • SPIC Beijing Gas Turbine Energy Technology Development Co.LTD, Beijing, China
Bibliografia
  • 1. Beaudoin, M.-A.; Behdinan, K. Analytical lump model for the nonlinear dynamic response of bolted flanges in aero-engine casings. Mechanical Systems and Signal Processing 2019; 115: 14-28, https://doi.org/10.1016/j.ymssp.2018.05.056
  • 2. Briand, J.; Esmaeel, R.A.; Taheri, F. Computational simulation and experimental verification of a new vibration-based structural health monitoring approach using piezoelectric sensors. Structural Health Monitoring-an International Journal 2012, https://doi.org/10.1177/1475921711414239
  • 3. Du, D.; Sun, W.; Ma, H.; Yan, X.; Liu, X. Vibration characteristics analysis for rotating bolted joined cylindrical shells considering the discontinuous variable-stiffness connection. Thin-Walled Structures 2022; 177, https://doi.org/10.1016/j.tws.2022.109422
  • 4. He, K.; Zhu, W.D. Detecting Loosening of Bolted Connections in a Pipeline Using Changes in Natural Frequencies. Journal of Vibration and Acoustics 2014; 136, https://doi.org/10.1115/1.4026973
  • 5. Hong, J.; Chen, X.; Wang, Y.; Ma, Y. Optimization of dynamics of non-continuous rotor based on model of rotor stiffness. Mechanical Systems and Signal Processing 2019; 131: 166-182, https://doi.org/10.1016/j.ymssp.2019.05.030
  • 6. Kim, Y.J.; Madugula, M.K.S. Behavior of bolted circular flange connections subject to tensile loading. International Journal of Steel Structures 2010, https://doi.org/10.1007/BF03249512
  • 7. Li, G.; Nie, Z.; Zeng, Y.; Pan, J.; Guan, Z. New Simplified Dynamic Modeling Method of Bolted Flange Joints of Launch Vehicle. Journal of Vibration and Acoustics 2020; 142, https://doi.org/10.1115/1.4045919
  • 8. Li, T.; Yang, D.; Zhao, B.; Sun, Q.; Huo, J.; Sun, W. Measured and investigated nonlinear dynamics parameters on bolted flange joints of combined rotor. Journal of Mechanical Science and Technology 2021; 35: 1841-1850, https://doi.org/10.1007/s12206-021-0404-8
  • 9. Li, Y.; Luo, Z.; Liu, J.; Ma, H.; Yang, D. Dynamic modeling and stability analysis of a rotor-bearing system with bolted-disk joint. Mechanical Systems and Signal Processing 2021; 158, https://doi.org/10.1016/j.ymssp.2021.107778
  • 10. Luan, Y.; Guan, Z.-Q.; Cheng, G.-D.; Liu, S. A simplified nonlinear dynamic model for the analysis of pipe structures with bolted flange joints. Journal of Sound and Vibration 2012; 331: 325-344, https://doi.org/10.1016/j.jsv.2011.09.002
  • 11. Meisami, F.; Moavenian, M.; Afsharfard, A. Nonlinear behavior of single bolted flange joints: A novel analytical model. Engineering Structures 2018; 173: 908-917, https://doi.org/10.1016/j.engstruct.2018.07.035
  • 12. Mir-Haidari, S.-E.; Behdinan, K. Nonlinear effects of bolted flange connections in aeroengine casing assemblies. Mechanical Systems and Signal Processing 2022; 166, https://doi.org/10.1016/j.ymssp.2021.108433
  • 13. Nizametdinov, F.R.; Romashin, Y.S.; Berne, A.L.; Leontyev, M.K. Investigation of Bending Stiffness of Gas Turbine Engine Rotor Flanged Connection. Journal of Mechanics 2020; 36: 729-736, https://doi.org/10.1017/jmech.2020.14
  • 14. Qin, Z.; Han, Q.; Chu, F. Bolt loosening at rotating joint interface and its influence on rotor dynamics. Engineering Failure Analysis 2016; 59: 456-466, https://doi.org/10.1016/j.engfailanal.2015.11.002
  • 15. Qin, Z.Y.; Han, Q.K.; Chu, F.L. Analytical model of bolted disk–drum joints and its application to dynamic analysis of jointed rotor. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2013; 228: 646-663, https://doi.org/10.1177/0954406213489084
  • 16. Razi, P.; Esmaeel, R.A.; Taheri, F. Improvement of a vibration-based damage detection approach for health monitoring of bolted flange joints in pipelines. Structural Health Monitoring 2013; 12: 207-224, https://doi.org/10.1177/1475921713479641
  • 17. Sah, S.M.; Thomsen, J.J.; Brøns, M.; Fidlin, A.; Tcherniak, D. Estimating bolt tightness using transverse natural frequencies. Journal of Sound and Vibration 2018; 431: 137-149, https://doi.org/10.1016/j.jsv.2018.05.040
  • 18. Schwingshackl, C.W.; Di Maio, D.; Sever, I.; Green, J.S. Modeling and Validation of the Nonlinear Dynamic Behavior of Bolted Flange Joints. Journal of Engineering for Gas Turbines and Power 2013; 135, https://doi.org/10.1115/1.4025076
  • 19. Schwingshackl, C.W.; Petrov, E.P. Modeling of Flange Joints for the Nonlinear Dynamic Analysis of Gas Turbine Engine Casings. Journal of Engineering for Gas Turbines and Power 2012; 134, https://doi.org/10.1115/1.4007342
  • 20. Sever, I.A. Nonlinear Vibration Phenomena in Aero-Engine Measurements. In Dynamics of Coupled Structures, Volume 4; Conference Proceedings of the Society for Experimental Mechanics Series; 2016; pp. 241-252. https://doi.org/10.1007/978-3-319-29763-7_23
  • 21. Shuguo, L.; Yanhong, M.; Dayi, Z.; Jie, H. Studies on dynamic characteristics of the joint in the aero-engine rotor system. Mechanical Systems and Signal Processing 2012; 29: 120-136, https://doi.org/10.1016/j.ymssp.2011.12.001
  • 22. Sun, W.; Li, T.; Yang, D.; Sun, Q.; Huo, J. Dynamic investigation of aeroengine high pressure rotor system considering assembly characteristics of bolted joints. Engineering Failure Analysis 2020; 112, https://doi.org/10.1016/j.engfailanal.2020.104510
  • 23. Thompson, J.C.; Sze, Y.; Strevel, D.G.; Jofriet, J.C. The Interface Boundary Conditions for Bolted Flanged Connections. Journal of Pressure Vessel Technology 1976; 98: 277, https://doi.org/10.1115/1.3454412
  • 24. Wang, C.; Zhang, D.; Zhu, X.; Jie, H. Study on the Stiffness Loss and the Dynamic Influence on Rotor System of the Bolted Flange Joint. American Society of Mechanical Engineers 2014, https://doi.org/10.1115/GT2014-26191
  • 25. Wang, Y.Q.; Zong, L.; Shi, Y.J. Bending behavior and design model of bolted flange-plate connection. Journal of Constructional Steel Research 2013; 84: 1-16, https://doi.org/10.1016/j.jcsr.2013.01.012
  • 26. Wong, C.N.; Zhu, W.D.; Xu, G.Y. On an iterative general-order perturbation method for multiple structural damage detection. Journal of Sound and Vibration 2004; 273: 363-386, https://doi.org/10.1016/s0022-460x(03)00543-1
  • 27. Xu, G.Y.; Zhu, W.; Emory, B.H. Experimental and Numerical Investigation of Structural Damage Detection Using Changes in Natural Frequencies. Journal of Vibration and Acoustics 2007, https://doi.org/10.1115/1.2731409
  • 28. Yao, X.; Wang, J.; Zhai, X. Research and application of improved thin-layer element method of aero-engine bolted joints. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 2016; 231: 823-839, https://doi.org/10.1177/0954410016643978
  • 29. Yao, X.; Wang, J. Effects of load and structure parameters of aero-engine bolted joints on joint stiffness. Tuijin Jishu/Journal of Propulsion Technology. 2017; 3,622: 424–433, https://doi.org/10.13675/j.cnki.tjjs.2017.02.022
  • 30. You, J.M.; Hong, Y.C.; Jeon, S.H.; Huh, J.; Ahn, J.-H. Behavior of bolt-connected steel plate girder attributable to bolt loosening failure in the lower flange. Engineering Failure Analysis 2020; 107, https://doi.org/10.1016/j.engfailanal.2019.104208
  • 31. Yu, P.; Li, L.; Chen, G.; Yang, M. Dynamic modelling and vibration characteristics analysis for the bolted joint with spigot in the rotor system. Applied Mathematical Modelling 2021; 94: 306-331, https://doi.org/10.1016/j.apm.2021.01.028
  • 32. Yue, C.; Chi, H.; Fan, J.; Zheng, X.; Zhang, Z. Prediction of bolt missing fault for multistage rotor by experimental test and analysis. The International Journal of Advanced Manufacturing Technology 2023; 124: 4551-4562, https://doi.org/10.1007/s00170-022-10356-3
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfc82447-3236-4cb8-9b67-d30daef96410
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.