PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Degree of conversion of dental composite materials in relation to different light-curing parameters

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the work was determine conversion degree of composite dental materials with different resins in relation to different light-curing parameters. Design/methodology/approach: The article provides an insight on factors influencing conversion degree of composite materials. Standardized samples made of Herculite XRV based on a methacrylate resin and Filtek Silorane based on silorane resin and were cured using two types of Light Curing Units (LCUs) – halogen and LED. The samples were cured at different distances and for different times. Findings:Research has showed that the polymerization of Filtek Silorane composite is significantly slower than polymerization of Herculite XRV composite. Extending exposure time does not compensate for decrease of light intensity caused by increase of the distance of the light source from the surface of cured composite. Research limitations/implications: Further studies on degree of conversion of dental composite materials will allow to expand the knowledge on characteristics of materials used in dental clinical practice. Practical implications: Evaluation of curing methods, curing parameters and good knowledge on units used in light-curing of composite materials allow to acquire filling materials with best functional qualities. Originality/value: The paper presents degree of conversion of composite materials based on different matrixes and cured with different methods.
Rocznik
Strony
60--69
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Pressure-Sentitive Adhesives Laboratory Institute of Chemical Organic Technology, West Pomeranian University of Technology, ul. Pulaskiego 10, 70-332 Szczecin, Poland
  • Health Care Centre Denticus 2, ul. Bolesława Śmiałego 28, 70-348 Szczecin, Poland
Bibliografia
  • [1] P.P.A.C. Albuquerque, A.D.L. M.R.R. Moraes, L.M. Cavalcante, L.F.J. Schneider, Color stability, conversion, water sorption and solubility of dental composites formulated with different photoinitiator systems, Journal of Dentistry 41 (2013) 67-72.
  • [2] N. Moszner, U. Salz, New developments in polymeric dental composites, Progress in Polymer Science 26 (2001) 535-576.
  • [3] J.M. Antonucci, Resin based dental composites-an overview. In: Chiellini E, Giusti G, Migliaresi C, Nicolai L, editors. Polymers in Medicine 11. Biomedical and Pharmaceutical Applications, New York: Plenum Press (1986) 277-303.
  • [4] D.C. Watts, The structural scope of biomaterials as amalgam alternatives. Proceedings of Conference on Clinically Appropriate Alternatives to Amalgam: Biophysical Factors in Restorative Decision-Making. Transactions of Academy of Dental Materials (1996) 51-67.
  • [5] P. Malara, Z. Czech, W. Świderski, The effect of the curing time and the distance from the light source on hardness of Methacrylate and Silorane resin-based dental composite materials, Archives of Materials Science and Engineering 70 (2014) 28-38.
  • [6] W. Świderski, Z. Czech, P. Malara, Studies on compression strength of photoreactive composite fillings cured with visible light, Chemical Industry 12 (2014) 2214-2217.
  • [7] P. Malara, Z. Czech, W. Świderski, The influence of light curing parameters on wear resistance of selected resin-based dental composites, Journal of Achievments in Materials and Manufacturing Engineering 64 (2014) 62-71.
  • [8] L. Feng, R.M. Carvalho, B.I. Suh, Insufficient cure under the condition of high irradiance and short irradiation time, Dental Materials 25 (2009) 283-289.
  • [9] R.B.T. Price, M.E. McLeod, C.M. Felix, Quantifying light energy delivered to a Class I restoration, Journal of the Canadian Dental Association 76 (2010) 23-30.
  • [10] J. Li, A.S. Fok, J. Satterthwaite, D.C. Watts, Measurement of the full-field polymerization shrinkage and depth of cure of dental composites using digital image correlation, Dental Materials 25 (2009) 582-588.
  • [11] W. Spahl, H. Budzikiewicz, W. Geurtsen, Determination of leachable components from four commercial dental composites by gas and liquid chromatography/mass spectrometry, Journal of Dentistry 26 (1998) 137-145.
  • [12] L.G.P. Moraes, R.S.F. Rocha, L.M. Menegazzo, E.B. de Araújo, K. Yukimitu, J.C.S. Moraes, Infrared spectroscopy: a tool for determination of the degree of conversion in dental composites, Journal of Applied Oral Science 16 (2008) 145-149.
  • [13] J. Jancar, W. Wang, A.T. Dibenedetto, On the heterogeneous structure of thermally cured Bis-GMA/TEGDMA resins, Journal of Materials Science Materials in Medicine 11 (2000) 675-682.
  • [14] A.C. Karmaker, A.T. Dibenedetto, A.J. Goldberg, Extent of conversion and its effect on the mechanical performance of Bis-GMA/PEGDMA-based resins and their composites with continuous glass fibers, Journal of Materials Science: Materials in Medicine 8 (1997) 369-374.
  • [15] M.A. Gauthier, I. Stangel, T.H. Ellis, X.X. Zhu, A new method for quantifying the intensity of the C=C band of dimethacrylate dental monomers in their FTIR and Raman spectra, Biomaterials 26 (2005) 6440-6448.
  • [16] F.A. Rueggeberg, D.T. Hashinger. C.W. Fairhurst, Calibration of FTIR conversion analysis of contemporary dental resin composites, Dental Materials 6 (1990) 241-249.
  • [17] K.H. Chung, H.E. Greener, Degree of conversion of seven visible light-cured posterior composites, Journal of Oral Rehabilitation 15 (1988) 555-560.
  • [18] N. Silikas, G. Eliades, D.C. Watts, Light intensity effects on resin composite degree of conversion and shrinkage strain, Dental Materials 16 (2000) 292-296.
  • [19] J.W. Stansbury, S.H. Dickens, Determination of double bond conversion in dental resins by near infrared spectroscopy, Dental Materials 17 (2001) 71-79.
  • [20] W.M. Palin, G.J.P. Fleming, F.J.T. Burke, P.M. Marquis, R.C. Randall, Monomer conversion versus flexure strength of a novel dental composite, Journal of Dentistry 31 (2003) 341-351.
  • [21] M. Claybourn, T. Massey, J. Highcock, D. Gogna, Analysis of processes in latex systems by Fourier transform Raman spectroscopy, Journal of Raman Spectroscopy 25 (1994) 123-129.
  • [22] C. Pianelli, J. Devaux, S. Bebelman, G. Leloup, The micro-Raman spectroscopy, a useful tool to determine the degree of conversion of light activated composite resins, Journal of Biomedical Materials Research 48 (1999) 675-681.
  • [23] F.A. Rueggeberg, J. Ergle, P.E. Lockwood, Effect of photoinitiator level on properties of a light-cured and post-cure heated model resin system, Dental Materials 13 (1997) 360-364.
  • [24] R.H. Halvorson, R.L. Erickson, C.L. Davidson, The effect of filler and silane content on conversion of resin-based composite materials, Dental Materials 19 (2003) 327-333.
  • [25] J.G. Leprince, M. Hadis, A.C. Shortall et al, Photoinitiatior type and applicability of exposure reciprocity law in filled and unfilled photoactive resins, Dental Materials 27 (2011) 157-164.
  • [26] A. Kuşgöz, T. Tüzüner, M. Ulker, B. Kemer, O. Saray, Conversion degree, microhardness, microleakage and fluoride release of different fissure sealants, Journal of the Mechanical Behavior of Biomedical Materials 3 (2010) 594-599.
  • [27] K. Bociong, J. Sokołowski, D. Rylska, The influence of polymerization time and conditions on the properties of dental composites, Material Engineering 5 (2013) 430-433 (in Polish).
  • [28] F. Gonçalves, C.L.N. Azevedo, J.L. Ferracane, R.R. Braga, BisGMA/TEGDMA ratio and filler content effects on shrinkage stress, Dental Materials 27 (2011) 520-526.
  • [29] J. Schmidseder, Aesthetic dentistry, II, ed. M. Tanasiewicz, Czelej, Lublin 2011 (in Polish).
  • [30] M.M. Baig, M. Mustafa, Z.A.A. Jeaidi, M. Al-Muhaiza, Microleakage evaluation in restorations using different resin composite insertion techniques and liners in preparations with high c-factor-an in vitro study, King Saud University Journal of Dental Sciences 4 (2013) 57-64.
  • [31] J.G. Leprince, W.M. Palin, M.A. Hadis, J. Devaux, G. Leloup, Progress in dimethacrylate-based dental composite technology and curing efficiency, Dental Materials 29 (2013) 139-156.
  • [32] C.S. Pfeifer, Z.R. Shelton, R.R. Braga, D. Windmoller, J.C. Machado, J.W. Stansbury, Characterization of dimethacrylate polymeric networks: A study of crosslinked structure formed by monomers used in dental composites, European Polymer Journal 47 (2010) 162-170.
  • [33] M. Domarecka, A. Sokołowska, M.I. Szynkowska, K. Sokołowski, J. Sokołowski, M. Łukomska-Szymańska, Some properties of flowable low-shrinkage dental composites, Chemical Industry 93 (2014) 775-777.
  • [34] S.D. Heintze, B. Zimmerli, Relevance of in vitro tests of adhesive and composite dental materials, a review in 3 parts. Part 1: Approval requirements and standardized testing of composite materials according to ISO specifications, Schweiz Monatsschr Zahnmed 121 (2011) 804-816.
  • [35] M.A. Latta, C.M. Stanislav, W.W. Barkmeier, Polymerization conversion of composite resins using different curing devices, Journal of dental research 79 (2000) 332-339.
  • [36] R.W. Mills, K.D. Jandt, S.H. Ashworth, Dental composite depth of cure with halogen and blue light emitting diode technology, British Dental Journal 186 (1999) 388-391.
  • [37] C.M. Murdock, M.A. Latta, W.W. Barkmeier, P.D. Hammesfahr, X. Wang, Barcol Hardness vs. Direct Degree of Conversion Measurement by FTIR, Journal of dental research 80 (2001) 110.
  • [38] A.D. Neves, J.A. Discacciati, R.L. Oréfice, W.C. Jansen, Correlation between degree of conversion, microhardness and inorganic content in composites, Pesquisa Odontologica Brasileira 16 (2002) 349-354.
  • [39] I.E. Ruyter, H. Oysaed, Conversion in different depths of ultraviolet and visible light activated composite materials, Acta Odontologica Scandinavica 40 (1982) 179-192.
  • [40] H. Arikawa, T. Kanie, K. Fujii, H. Takahashi, S. Ban, Effect of inhomogeneity of light from light curing units on the surface hardness of composite resin, Dental Materials 27 (2008) 21-28.
  • [41] R.B.T. Price, J. Fahey, C.M. Felix, Knoop micro-hardness mapping used to compare the efficacy of LED, QTH and PAC curing lights, Operative Dentistry 35 (2010) 58-68.
  • [42] R.L. Orefice, J.A.C. Discacciati, A.D. Neves, H.S. Mansur, W.C. Jansen, Polym Test 22 (2003) 77-81.
  • [43] P.A.F. Amato, R.P. Martins, C.A.S. Cruz, M.V. Capella, L.P. Martins, Time reduction of light curing: Influence on conversion degree and microhardness of orthodontic composites, American Journal of Orthodontics and Dentofacial Orthopedics146 (2014) 40-46.
  • [44] I.M. Hammouda, Effect of light-curing method on wear and hardness of composite resin, Journal of the Mechanical Behavior of Biomedical Materials 3 (2010) 216-222.
  • [45] F.A. Rueggeberg, State-of-the-art: dental photocuring -a review, Dental Materials 27 (2011) 39-52.
  • [46] N.M. Masre, J. Sokołowski, B. Łapińska, The influence of the intensity of light and time exposure on the durability of dental composites, Dental Forum 2 (2010) 27-31 (in Polish).
  • [47] R.L. Erickson, W.W. Barkmeier, Curing characteristics of a composite. Part 2: The effect of curing configuration on depth and distribution of cure, Dental Materials 30 (2014) 134-145.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfc6251a-7963-412b-94ae-29f870681dc4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.