PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Wave-Absorbing Functional Particles on the Electromagnetic Properties and Mechanical Properties of Coated Composites for Nickel Powders

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ absorbujących fale cząstek funkcyjnych na właściwości elektromagnetyczne i mechaniczne kompozytów powlekanych żywicą poliuretanową zawierającą proszek niklu
Języki publikacji
EN
Abstrakty
EN
In this subject, a single-layer coated composite for nickel powders was prepared using PU2540 polyurethane as the matrix, nickel powder as the wave-absorbing functional particle, and coating technology on plain cotton fabric. The influence of wave-absorbing functional particles on the dielectric, shielding effectiveness and mechanical properties of the single-layer coated composite for nickel powders was mainly analysed and compared. Results showed that the real and imaginary parts and loss tangent of the dielectric constant were all the largest when the iron powder was mixed with the nickel powder, and its polarizing ability, loss ability and attenuation ability with respect to electromagnetic waves were all the maximum. When the graphene was mixed with the nickel powder, the shielding attenuation ability with respect to electromagnetic waves was the best.
PL
W ramach pracy przygotowano jednowarstwowy kompozyt powlekany żywicą poliuretanową zawierającą proszek niklu. Do przygotowania kompozytów użyto poliuretanu PU2540 jako matrycy i proszku niklu jako absorbującej fale cząstki funkcjonalnej oraz zastosowano technologię powlekania na gładkiej tkaninie bawełnianej. Przeanalizowano i porównano głównie wpływ absorbujących fale funkcjonalnych cząstek na dielektryk, skuteczność ekranowania i właściwości mechaniczne jednowarstwowego powlekanego kompozytu. Wyniki pokazały, że rzeczywiste i urojone części oraz styczna strat stałej dielektrycznej były największe, gdy proszek żelaza został zmieszany z proszkiem niklu, a jego zdolność polaryzacyjna, zdolność do strat i zdolność tłumienia fal elektromagnetycznych były maksymalne. Gdy grafen został zmieszany z proszkiem niklu, zdolność tłumienia ekranowania fal elektromagnetycznych była najlepsza.
Rocznik
Strony
75--81
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
  • Tianjin Municipal Key Laboratory of Advanced Fibre and Energy Storage, Tianjin 300387, China
  • Key Laboratory of Advanced Textile Composites of Ministry of Education, Tianjin 300387, China
autor
  • Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
autor
  • Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
autor
  • Tianjin Municipal Key Laboratory of Advanced Fibre and Energy Storage, Tianjin 300387, China
autor
  • Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
  • Tianjin Municipal Key Laboratory of Advanced Fibre and Energy Storage, Tianjin 300387, China
  • Key Laboratory of Advanced Textile Composites of Ministry of Education, Tianjin 300387, China
Bibliografia
  • 1. Liu YJ, Liu YC, Zhao XM. The Research of EM Wave Absorbing Properties of Ferrite/Silicon Carbide Double Coated Polyester Woven Fabric. Journal of the Textile Institute, 2018; 109: 106-112.
  • 2. Li HC, Qian XR, Li TL, Ni YH. Percolation for Coated Conductive Paper: Electrical Conductivity as a Function of Volume Fraction of Graphite and Carbon Black. Bioresources 2015; 10: 4877-4885.
  • 3. Liu YJ, Liu BC, Zhao XM. The Influence of the Type and Concentration of Oxidants on the Dielectric Constant of the Polypyrrole-Coated Plain Woven Cotton Fabric. Journal of the Textile Institute 2018; 109(9): 1127-1132.
  • 4. Sobha AP, Narayanankutty SK. Improved Strain Sensing Property of Functionalised Multiwalled Carbon Nanotube/Polyaniline Composites in TPU Matrix. Sensors and Actuators A-physical 2015; 233: 98-107.
  • 5. Li J, Bi S, Mei B, Shi F, Cheng Wl, Su XJ, Wang J J. Effects of Three-Dimensional Reduced Graphene Oxide Coupled with Nickel Nanoparticles on the Microwave Absorption of Carbon Fiberbased Composites. Journal of Alloys and Compounds 2017; 717: 205-213.
  • 6. Liu YJ, Zhao XM, Tuo X. Study of Graphite/Silicon Carbide Coating of Plain Woven Fabric for Electrical Megawatt Absorbing Properties. Journal of the Textile Institute 2017; 108(4): 483-488.
  • 7. Ren F, Song DP, Li Z, Jia LC, Zhao YC, Yan DX, Ren PG. Synergistic Effect of Graphene Nanosheets and Carbonyl Iron–Nickel Alloy Hybrid Filler on Electromagnetic Interference Shielding and Thermal Conductivity of Cyanate Ester Composites. Journal of Materials Chemistry C 2018; 6: 1476-1486.
  • 8. Sambyal P, Dhawan SK, Gairola P, Chauhan SS, Gairola SP. Synergistic Effect of Polypyrrole/BST/RGO/Fe3O4 Composite for Enhanced Microwave Absorption and EMI Shielding in X-Band. Current Applied Physics 2018; 18: 611-618.
  • 9. Lin SF, Ju S, Zhang JW, Shi G, He YL, Jiang DZ. Ultrathin Flexible Graphene Films with High Thermal Conductivity and Excellent EMI Shielding Performance Using Large-Sized Graphene Oxide Flakes. Rsc Advances 2019; 9: 1419-1427.
  • 10. Nazir A, Yu HJ, Wang L, Haroon M, Ullah RS, Fahad S, Usman M. Recent Progress in the Modification of Carbon Materials and their Application in Composites for Electromagnetic Interference Shielding. Journal of Materials Science 2018; 53: 8699-8719.
  • 11. Xiang C, Guo RH, Lin SJ, Jiang SX, Lan JW, Wang C, Zhang Y. Lightweight and Ultrathin Tio2-Ti3C2TX/Graphene Film with Electromagnetic Interference Shielding. Chemical Engineering Journal 2019; 360: 1158-1166.
  • 12. Li Y, Sun L, Xu F, Wang SS, Peng QY, Yang ZY, Li YB. Electromagnetic and acoustic double-shielding graphenebased metastructures. Nanoscale 2019; 11: 1692-1699.
  • 13. Yuan HR, Zhang X, Yan F, Zhang S, Zhu CL, Li CY, Chen YJ. Nitrogen-Doped Carbon Nanosheets Containing Fe3C Nanoparticles Encapsulated in Nitrogen-Doped Graphene Shells for High-Performance Electromagnetic Wave Absorbing Materials. Carbon, 2018; 140: 368-376.
  • 14. Zhu HX, Yang YQ, Duan HJ, Zhao GZ, Liu YQ. Electromagnetic Interference Shielding Polymer Composites with Magnetic and Conductive Feco/Reduced Graphene Oxide 3D Networks. Journal of Materials Science-materials in Electronics 2019; 30: 2045-2056.
  • 15. Liu YJ, Liu YC, Zhao XM. The Research of EM Wave Absorbing Properties of Ferrite/Silicon Carbide/Graphite Three-Layer Composite Coating Knitted Fabrics. Journal of the Textile Institute 2016; 107: 483-492.
  • 16. Li BZ, Weng XD, Sun XD, Zhang Y, Lv XL, Gu GX. Facile Synthesis of Fe3O4/Reduced Graphene Oxide/Polyvinyl Pyrrolidone Ternary Composites and Their Enhanced Microwave Absorbing Properties. Journal of Saudi Chemical Society 2018, 22: 979-984.
  • 17. Quan L, Qin FX, Estevez D, Wang H, Peng HX. Magnetic Graphene for Microwave Absorbing Application: Towards the Lightest Graphene-Based Absorber. Carbon 2017; 125: 630-639.
  • 18. Li Z, Haigh A, Soutis C, Gibson A. X-Band Microwave Characterisation and Analysis of Carbon Fibre-Reinforced Polymer Composites. Composite Structures 2019; 208: 224-232.
  • 19. Liu YJ, Liu YC, Zhao XM. The Influence of Dopant on the Dielectric Properties of Flexible Polypyrrole Composites. Journal of the Textile Institute 2017; 108: 1280-1284.
  • 20. Li Q, Yin XW, Duan WY, Cheng LF, Zhang LT. Improved Dielectric Properties of PDCS-Sicn by In-Situ Fabricated Nano-Structured Carbons. Journal of the European Ceramic Society 2017; 37: 1243-1251.
  • 21. Barannik AA, Cherpak NT, Protsenko IA, Gubin AI, Kieev D, Vitusevich S. Contactless Exploration of Graphene Properties Using Millimeter Wave Response of WGM Resonator. Applied Physics Letters 2018; 113: 094102.
  • 22. Liu Y, Zhao X. Experimental Studies on the Dielectric Behaviour of Polyester Woven Fabrics. FIBRES & TEXTILES in Eastern Europe 2016; 24, 3(117): 67-71. DOI: 10.5604/12303666.1196614.
  • 23. Gao X, Wang Y, Wang Q G, Wu X M, Zhang W Z, Zong M, Zhang L J. Facile Synthesis Of A Novel Flower-Like BiFeO3 Microspheres/Graphene with Superior Electromagnetic Wave Absorption Performances. Ceramics International 2019; 45: 3325-3332.
  • 24. Liu YJ, Zhao XM, Tuo X. Preparation of Polypyrrole Coated Cotton Conductive Fabrics. Journal of the Textile Institute 2017; 108(5): 829-834.
  • 25. Liu YJ, Liu YC, Zhao XM. The Influence of Pyrrole Concentration on the Dielectric Properties of Polypyrrole Composite Material. The Journal of the Textile Institute, 2017; 108(7): 1246-1249.
  • 26. Liu YJ, Zhao XM, Tuo X. The Research of EM Wave Absorbing Properties of Ferrite/Silicon Carbide/Graphite Three-Layer Composite Coating Knitted Fabrics. Journal of the Textile Institute 2016; 107(4): 483-492.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfc4b876-6942-490e-afde-e1c8c1f1193e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.