Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the development of ship motion control systems, software simulations or scale model experiments in pools or open water are very often carried out in the verification and testing stages. This paper describes the process of building a software wave simulator based on data gathered on the Silm Lake near Iława, Poland, where scale ship models are used for research and training. The basis of the simulator structure is a set of shaping filters fed with Gaussian white noise. These filters are built in the form of transfer functions generating irregular wave signals for different input wind forces. To enable simulation of a wide range of wind speeds, nonlinear interpolation is used. The lake wave simulation method presented in this paper fills a gap in current research, and enables accurate modelling of characteristic environmental disturbances on a small lake for motion control experiments of scale model ships.
Czasopismo
Rocznik
Tom
Strony
12--21
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Gdynia Maritime University, Faculty of Electrical Engineering, Department of Ship Automation, Gdynia, Poland
autor
- Gdynia Maritime University, Faculty of Electrical Engineering, Department of Ship Automation, Gdynia, Poland
Bibliografia
- 1. H. L. Alfheim, K. Muggerud, M. Breivik, E. F. Brekke, E. Eide, and Ø. Engelhardtsen, “Development of a dynamic positioning system for the ReVolt model ship,” IFACPapersOnLine, vol. 51, no. 29, pp. 116–121, Sept. 2018, doi: 10.1016/j.ifacol.2018.09.479.
- 2. J. C. Allan and R. M. Kirk, “Wind wave characteristics at Lake Dunstan, South Island, New Zealand,” New Zeal. J. Mar. Fresh., vol. 34, no. 4, pp. 573–591, Mar. 2000, doi: 10.1080/00288330.2000.9516959.
- 3. A. M. Bassam, A. B. Phillips, S. R. Turnock, and P. A. Wilson, “Experimental testing and simulations of an autonomous, self-propulsion and self-measuring tanker ship model,” Ocean Eng., vol. 186, pp. 106065, Aug. 2019, doi: 10.1016/j. oceaneng.2019.05.047.
- 4. C. Drews, “Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient,” PLOS ONE, vol. 8, no. 8, pp. 1–16, Aug. 2013, doi: 10.1371/journal. pone.0072510.
- 5. O. M. Faltinsen, Sea Loads on Ships and Offshore Structures, Cambridge University Press, Cambridge – New York, 1990.
- 6. T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley & Sons, Ltd, 2011, doi:10.1002/9781119994138.
- 7. W. Gierusz and M. Rybczak, “Effectiveness of multidimensional controllers designated to steering of the motions of ship at low speed,” Sensors, vol. 20, no. 12, p. 3533, Jun. 2020, doi: 10.3390/s20123533.
- 8. T. Holton, Digital Signal Processing: Principles and Applications, Cambridge University Press, 2021, doi:10.1017/9781108290050.
- 9. K-R. Jin and Z-G Ji, “Calibration and verification of a spectral wind–wave model for Lake Okeechobee,” Ocean Eng., vol. 28, no. 5, pp. 571–584, May 2001, doi: 10.1016/ S0029-8018(00)00009-3.
- 10. A. Klockner, A. Knoblach and A. Hackmann, “How to shape noise spectra for continuous system simulation,” Math. Comp. Model. Dyn., vol. 23, no. 3, pp. 284–300, Feb. 2017, doi:10.1080/13873954.2017.1298622.
- 11. J. Ley and O. el Moctar, “A comparative study of computational methods for wave-induced motions and loads,” J. Mar. Sci. Eng., vol. 9, no. 1, p. 83, Jan. 2021, doi: 10.3390/jmse9010083.
- 12. A. Miller and A. Rak, “Measurement system for the environmental load assessment of the scale ship model,” Sensors, vol. 23, no. 1, p. 306, Dec. 2022, doi: 10.3390/ s23010306.
- 13. A. Miller and A. Rak, “A measurement system for the environmental load assessment of a scale ship model–Part II,” Sensors, vol. 23, no. 7, p. 3415, Mar. 2023, doi: 10.3390/ s23073415.
- 14. L. Morawski, J. Pomirski, P. Sikora, and R. Sokół, “Measurement system for wind and waves characteristics registration on the Silm Lake,” TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, vol. 4, no. 2, pp. 205–207, Jun. 2010, doi:10.1201/9780203869345.ch83.
- 15. L. P. Perera, L. Moreira, F. P. Santos, V. Ferrari, S. Sutulo, and C. Guedes Soares, “A navigation and control platform for real-time manoeuvring of autonomous ship models,” IFAC Proc. Vol., vol. 45, no. 27, pp. 465–470, 2012, doi: 10.3182/20120919-3-IT-2046.00079.
- 16. W. J. Pierson Jr. and L. Moskowitz, “A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii,” J. Geophys. Res., vol. 69, no. 24, pp. 5181–5190, Dec. 1964, doi:10.1029/JZ069i024p05181.
- 17. Shiphandling Research and Training Centre. [Online]. Available: http://www.ilawashiphandling.com.pl [Accessed 15 April 2023].
- 18. C. T. Stansberg, G. Contento, S. Hong, M. Irani, S. Ishida, and R. Mercier, “The Specialist Committee on Waves final report and recommendations to the 23rd ITTC,” In: Proceedings of the 23rd ITTC, Venice, Italy, 8–14 Sep. 2002, pp. 505–736.
- 19. D. N. Sugianto, M. Zainuri, A. Darari, S. S. Darsono and N. Yuwono, “Wave height forecasting using measurement wind speed distribution equation in Java Sea, Indonesia,” International Journal of Civil Engineering and Technology, vol. 8, no. 5, pp. 604–619, May 2017.
- 20. M. Tomera, “Hybrid switching controller design for the maneuvering and transit of a training ship,” Int. J. Appl. Math. Comput. Sci., vol. 27, no. 1, Mar. 2017, pp. 63–77. doi:10.1515/amcs-2017-0005.
- 21. A. Tsvetkova and M. Hellström, “Creating value through autonomous shipping: An ecosystem perspective,” Marit. Econ. Logist., vol. 24, no. 2, pp. 255–277 Jun. 2022, doi: 10.1057/s41278-022-00216-y.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfc34a1a-b078-423d-91c1-273dad62b1f7