PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ dodatku metakaolinu na odporność na pękanie ogniotrwałych betonów zbrojonych włóknami bazaltowymi

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Influence of metakaolin addition on fracture properties of refractory concretes reinforced with basalt fibres
Języki publikacji
PL EN
Abstrakty
PL
W pracy zbadano odporność na wysokie temperatury ogniotrwałego betonu z cementu glinowego zbrojonego włóknami bazaltowymi. W serii próbek cement zastępowano metakaolinem w ilości od 5% do 25%. Właściwości próbek betonowych, a mianowicie wytrzymałość na ściskanie i zginanie oraz energię pękania, zbadano po podgrzaniu do temperatury 600°C i 1000°C. Ustalono, że stosunkowo mały dodatek metakaolinu, w zakresie 5% do 10% zapewnia większą wytrzymałość, jednak w przypadku równoczesnego zastosowania włókien bazaltowych wzrasta nawet przy dodatku 10% i 20%. Korzystny dodatek włókien jest mały: 0,25% do 0,5% objętościowo. Pomiary energii pękania pokazują duży wpływ włókien na propagację pęknięć w próbkach ogrzewanych do 600°C i 1000°C.
EN
In the paper the resistance to high temperature of refractory concrete from calcium aluminate cement reinforced with basalt fibres was studied. In the series of samples cement was replaced by metakaolin from 5% to 25%. The properties i.e. flexural, compressive strength and fracture energy of concrete samples heated at 600°C and 1000°C were examined. It was established that relatively low metakaolin addition, in the range of 5% to 10%, is ensuring higher strength, but with simultaneous basalt fibres application is higher from 10% to even 20%. The optimum fibres percentage is low, 0.25% to 0.5 % by volume. The fracture energy determination show the significant fibres influence on cracks propagation in samples heated at 600°C and 1000°C.
Czasopismo
Rocznik
Strony
140--148
Opis fizyczny
Bibliogr. 33 poz., il., tab.
Twórcy
autor
  • Czech Technical University in Prague, Faculty of Civil Engineering, Experimental Centre, Czech Republic
autor
  • Czech Technical University in Prague, Faculty of Civil Engineering, Experimental Centre, Czech Republic
autor
  • Czech Technical University in Prague, Faculty of Civil Engineering, Experimental Centre, Czech Republic
  • Czech Technical University in Prague, Faculty of Civil Engineering, Experimental Centre, Czech Republic
Bibliografia
  • 1. A. Vimmrová, M. Keppert, O. Michalko, R. Černý, Calcined gypsum-lime-metakaolin binders, Design of optimal composition, 52, 91-96 (2014).
  • 2. J. Zatloukal, P. Bezdička, Analysis of Powder Samples Extracted from Concrete Structures of Nuclear Plant, Advanced Materials Research, 1054, 1-5 (2014).
  • 3. A. Behnood, H. Ziari, Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures., Cem. Concr. Comp., 30, 109-112 (2008).
  • 4. R. Černý, J. Poděbradská, M. Tótová, J. Toman, J. Drchalová, P. Rovnaníková, P. Bayer, Hygrothermal Properties of Glass Fiber Reinforced Cements Subjected to Elevated Temperature, Mat. Struct., 37, 597-607 (2004).
  • 5. Z. J. Li, X. M. Zhou, B. Shen, Fiber-cement extrudates with perlite subjected to high temperatures. J Mat. Civil Eng., 16, pp. 221-229 (2004).
  • 6. L. Bodnárová, J. Válek, L. Sitek, J. Foldyna, Effect of high temperatures on cement composite materials in concrete structures, Acta Geodynamica et Geomaterialia, 10, 2, 173-180 (2013).
  • 7. M. Keppert, E. Vejmelková, S. Švarcová, P. Bezdička, R. Černý, Microstructural changes and residual properties of fiber reinforced cement composites exposed to elevated temperatures, Cement Wapno Beton, 79, 2, 77-89 (2012).
  • 8. A. Sičáková, et al., New generation cement concretes – Ideas, Design, Technology and Aplication, p. 156, 2008.
  • 9. E. Vejmelková, R. Černý, Thermal properties of PVA-Fiber reinforced cement composites at high temperatures, Applied mechanics and materials, 377, 45-49 (2013).
  • 10. D. J. Kim, A. E. Naaman, S. El-Tawil, Comparative flexural behavior of four fibre reinforced cementitious composites, Cem. Concr. Comp., 30, 10, 917-928 (2008).
  • 11. V. Slivka, M. Vavro, The significance of textural and structural properties of north-moravian basaltoids for the manufacture of mineral fibres, Ceramics, 40, 4, 149-159 (1996).
  • 12. T. Jung, R. V. Subramanian, Strengthening of basalt fiber by alumina addition, Scripta Metallurgica et Materialia, 28, 4, 527-532 (1993).
  • 13. B. V. Perevozchikova, A. Pisciotta, B. M. Osovetsky, E. A. Menschikov, K. P. Kazymov, Quality Evaluation of the Kuluevskaya Basalt Outcrop for the Production of Mineral Fiber, Southern Urals, Russia, Energy procedia, 59, 309-314 (2014).
  • 14. S. I. Gutnikov, M. S. Manylov, Y. V. Lipatov, B. I. Lazoryak, K. V. Pokholok, Effect of the reduction treatment on the basalt continuous fiber crystallization properties, J. Non-Crystalline Solids, 368, 45-50 (2013).
  • 15. Ch. Jiang, K. Fan, F. Wu, D. Chen, Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete, Materials and Design, 58, 187-193 (2014).
  • 16. G. Landucci, F. Rossi, C. Nicolella, S. Zanelli, Design and testing of innovative materials for passive fire protection, Fire Safety Journal, 44, 1103-1109 (2009).
  • 17. V. Dhand, G. Mittal, K. Y. Rhee, D. Hui, A short review on basalt fiber reinforced polymer composites, Composites Part B: Engineering, In Press, Accepted Manuscript, 2014.
  • 18. N. S. M. Offermans, R. Vermeulen, A. Burdorf, R. A. Goldbohm, A. P. Keszei, S. Peters, T. Kauppinen, H. Kromhout, P. A. Van Den Brandt, Occupational Asbestos Exposure and Risk of Esophageal, Gastric and Colorectal Cancer in the Prospective, Netherlands Cohort Study, International Journal of Cancer, 135, 8, 1970-1977 (2014).
  • 19. V. A. Rybin, A. V. Utkin, N. Y. Baklanova, Alkali resistance, microstructural and mechanical performance of zirconia-coated basalt fibers, Cem. Concr. Res., 53, 1-8 (2013).
  • 20. S. Baştürk, H. Uyanık, Z. Kazancı, An analytical model for predicting the deflection of laminated basalt composite plates under dynamic loads, Composite Structures, 116, 273-285 (2014).
  • 21. J. Krassowska, A. Lapko, The influence of basalt fibers on the shear and flexural capacity of reinforced concrete continuous beams, in: First International Conference for Ph.D. Students in Civil Engineering, Cluj-Napoca, Romania 2012.
  • 22. P. K. Mehta, P. J. Monteiro, Concrete: Microstructure, Properties, and Materials, 2006.
  • 23. G. A. Khoury, Effect of fire on concrete and concrete structures, Imperial College, London UK.
  • 24. O. Holčapek, P. Reiterman, F. Vogel, E. Vejmelková, P. Konvalinka, Mechanical Properties of Aluminous Paste at High Temperature, Research and Applications in Structure Engineering, Mechanics and Computation, pp. 635-636, Cape Town 2013.
  • 25. B. B. Sabir, S. Wild, J. Bai, Metakaolin and Calcined Clays as Pozzolans for Concrete: a review, Cem. Concr. Comps., 30, 441-454 (2001).
  • 26. P. Dinakar, K. Pradosh, G. Sriram, Effect of Metakaolin Content on the Properties of High Strength Concrete, International Journal of Concrete Structures and Materials, 7, 215-223, (2013).
  • 27. R. Stonis, I. Pundiene, V. Antonoviè, M. Kligis, E. Spudulis, Study of the Effect of Replacing Microsilica in Heat-resistant Concrete with Additive Based on Metakaolin, Refractories and Industrial Ceramics, 54, 3, 43 – 48 (2013).
  • 28. M. S. Morsy, S. S. Shebl, Effect of Silica Fume and Metakaolin Pozzolana on the Performance of Blended Cement Pastes Against Fire 14, Ceramics, 51, 1, 40 – 44 (2007).
  • 29. E. Vejmelková, D. Koňáková, M. Čáchová, M. Keppert, R. Černý, Effect of hydrophobization on the properties of lime-metakaolin plasters, Construction and Building Materials, 37, 556-561 (2012).
  • 30. Oh, B.-H. Jang, S.-Y. Byun, Hyung-Kyun, Prediction of Fracture Energy of Concrete, KCI Concrete Journal, 11 (1999).
  • 31. N. Kabay, Abrasion resistance and fracture energy of concretes with basalt fiber, Constr. Build. Mat., 50, 95-101 (2014).
  • 32. RILEM, Materials and Structures, 106, 18, 285-290 (1985).
  • 33. Neville A.M. Properties of Concrete, 5th edition, Pearson, Harlow, England.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfc1bc70-367e-4493-8983-9eeea93fca17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.