Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The relationships between T-rough sets and covering based rough sets are investigated, and two kinds of generated methods of rough approximation operators from existing rough sets are established. Moreover, applying the aforementioned generated methods of approximation operators, S-rough sets and some new covering-based rough sets are introduced and their basic properties are discussed.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
195--212
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
autor
- Department of Mathematics College of Arts and Sciences Shanghai Maritime University Shanghai 201306, China
autor
- School of Computer Science Northwestern Polytechnical University Xi’an Shaanxi 710072, China
autor
- College of Computer and Information Engineering Henan Normal University Xinxiang 453007, China
autor
- School of Science Xi’an Polytechnic University Xi’an 710048, Shaanxi, China
Bibliografia
- [1] Banerjee, M., Chakraborty M.: Rough sets through algebraic logic, Fundamenta Informaticae, 28, 1996, 211–221.
- [2] Bonikowski, Z.: A certain conception of the calculus of rough sets, Notre Dame Journal of Formal Logic, 33 (3), 1992, 412–421.
- [3] Cattaneo, G., Ciucci, D.: Algebraic structures for rough sets, in: Transactions on Rough Sets II, LNCS 3135 (J. F. Peters et al.,Eds.) , 2004, 208–252.
- [4] Ciucci, D.: A unifying abstract approach for roughmodels, in: RSKT 2008, LNAI 5009 (G.Wang et al., Eds.), 2008, 371–378.
- [5] Ciucci, D., Dubois, D.: Truth-functionality, rough sets and three-valued logics, Proceedings ISMVL, 2010, 98–103.
- [6] Ciucci, D.: Temporal dynamics in rough sets based on coverings, in: RSKT 2010, LNAI 6401 (J. Yu et al., Eds.), 2010, 126–133.
- [7] Dai, J. H.: Rough set approach to incomplete numerical data, Information Sciences, 241, 2013, 43–57.
- [8] Dai, J. H., Tian, H.W.: Fuzzy rough set model for set-valued data, Fuzzy Sets and Systems, 229, 2013, 54–68.
- [9] Gehrke, M., Walker, E.: On the structure of Rough Sets, Bulletin Polish Academy of Science (Mathematics), 40, 1992, 235–245.
- [10] Huang,B., Zhuang, Y. L., Li, H. X., Wei, D. K.: A dominance intuitionistic fuzzy-rough set approach and its applications, Applied Mathematical Modelling, 37(12-13), 2013, 7128–7141.
- [11] Jarvinen, J.: Lattice theory for rough sets, in:Transactions on Rough Sets VI, LNCS 4374 (J. F. Peters et al., Eds.) , 2007, 400–498.
- [12] Jarvinen, J., Radeleczki, S., Veres, L.: Rough sets determined by quasiorders, Order, 26, 2009, 337–355.
- [13] Jarvinen, J., Radeleczki, S.: Representation of Nelson algebras by rough sets determined by quasiorders, Algebra Universalis, 66, 2011, 163–179.
- [14] Liu, C. H., Miao, D. Q., Qian, J.: On multi-granulation covering rough sets, International Journal of Approximate Reasoning, 55(6), 2014, 1404–1418.
- [15] Liu, G. L., Zhu,W.: The algebraic structures of generalized rough set theory, Information Sciences, 178(21), 2008, 4105–4113.
- [16] Liu, G. L., Sai, Y.: A comparison of two types of rough sets induced by coverings, International Journal of Approximate Reasoning, 50, 2009, 521–528.
- [17] Liu, G. L., Zhu, K.: The relationship among three types of rough approximation pairs, Knowledge-Based Systems, 60, 2014, 28–34.
- [18] Ma, Z. M., Hu, B. Q.: Topological and lattice structures of image-fuzzy rough sets determined by lower and upper sets, Information Sciences, 218, 2013, 194–204.
- [19] Pawlak, Z.: Rough sets, International Journal of Computer and Information Science, 11, 1982, 341–356.
- [20] Pawlak, Z., Skowron, A.: Rudiments of rough sets, Information Sciences, 177, 2007, 3–27.
- [21] Pomykala, J., Pomykala, J. A.: The stone algebra of rough sets, Bulletin of the Polish Academy of Sciences Mathematics, 36, 1988, 495–508.
- [22] Qian, Y. H., Liang, J. Y., Yao, Y. Y., Dang, C. H.: MGRS–A Multi-Granulation Rough Set, Information Sciences, 180, 2010, 949–970.
- [23] Qian, Y. H., Li, S. Y., Liang, J. Y., Shi, Z. Z., Wang, F.: Pessimistic rough set based decisions–A multigranulation fusion strategy, Information Sciences, 264, 2014, 196–210.
- [24] Restrepo, M., Cornelis, C., Gomez, J.: Duality, conjugacy and adjointness of approximation operators in covering-based rough sets, International Journal of Approximate Reasoning, 55(1), 2014, 469–485.
- [25] Restrepo, M., Cornelis, C., Gomez, J.: Partial order relation for approximation operators in covering based rough sets, Information Sciences, 284, 2014, 44–59.
- [26] Samanta, P., Chakraborty,M. K.: Generalized rough sets and implication lattices, Transactions on rough sets XIV, 2011, 183–201.
- [27] She, Y. H., He, X. L.: On the structure of the multigranulation rough set model, Knowledge-Based Systems, 36, 2012, 81–92.
- [28] She, Y. H., He, X. L.: Rough approximation operators on R0-algebras (nilpotent minimum algebras) with an application in formal logic L_, Information Sciences, 277, 2014, 71–89.
- [29] Skowron, A., Stepaniuk, J.: Tolerance approximation spaces, Fundamenta Informaticae, 27(2-3), 1996, 245–253.
- [30] Wasilewski, P., Slezak, D.: Foundations of rough sets from vagueness perspective, in: Rough Computing: Theories, Technologies and Applications (A. E. Hassanien et al., Eds.), 2008, 1–37.
- [31] Wang, S. P., Zhu, Q. X., Zhu, W., Min, F.: Quantitative analysis for covering-based rough sets through the upper approximation number, Information Sciences, 220, 2013, 483–491.
- [32] Xiao, Q. M., Li, Q. G., Guo, L. K.: Rough sets induced by ideals in lattices, Information Sciences, 271, 2014, 82–92.
- [33] Xue, T. Y., Xue, Z. A., Cheng, H. R., Liu, J., Zhu, T. L.: A novel method of the generalized interval-valued fuzzy rough approximation operators, The Scientific World Journal, 2014, Article ID 783940, 14 pages.
- [34] Yao, Y. Y.: Constructive and algebraic methods of the theory of rough sets, Information Sciences, 109(1-4), 1998, 21–47.
- [35] Yao, Y. Y., Yao, B. X.: Covering based rough set approximations, Information Sciences, 200, 2012, 91–107.
- [36] Yao, Y. Y., Deng, X. F.: Quantitative rough sets based on subsethood measures, Information Sciences, 267, 2014, 306–322.
- [37] Yang, X. B., Zhang, M., Dou, H. L., Yang, J. Y.: Neighborhood systems-based rough sets in incomplete information system, Knowledge-Based Systems, 24(6), 2011, 858–867.
- [38] Zhang, X. H., Yao, Y. Y., Yu, H.: Rough implication operator based on strong topological rough algebras, Information Sciences, 180(19), 2010, 3764–3780.
- [39] Zhang, X. H., Zhou, B., Li, P.: A general frame for intuitionistic fuzzy rough sets, Information Sciences, 216, 2012, 34–49.
- [40] Zhang, X. H., Dai, J. H., Yu, Y. C.: On the union and intersection operations of rough sets based on various approximation spaces, Information Sciences, 292, 2015, 214–229.
- [41] Zhang, X. Y., Miao, D. Q.: Quantitative information architecture, granular computing and rough set models in the double-quantitative approximation space of precision and grade, Information Sciences, 268, 2014, 147–168.
- [42] Zhang, Y. L., Luo, M. K.: Relationships between covering-based rough sets and relation-based rough sets, Information Sciences, 225, 2013, 55–71.
- [43] Zhu,W., Wang, F. Y.: Reduction and axiomization of covering generalized rough sets, Information Sciences, 152, 2003, 217–230.
- [44] Zhu,W.,Wang, F. Y.: The fourth type of covering-based rough sets, Information Sciences, 201, 2012, 80–92.
- [45] Zhu, W.: Relationship between generalized rough sets based on binary relation and covering, Information Sciences, 179, 2009, 210–225.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfbe2b37-1495-4996-b22b-0a690f67fc76