PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On uniform strict minima for vector-valued functions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We introduce uniform strict minima for vector-valued functions and provide conditions for their Lipschitz continuity as functions of linear perturbations. We also investigate regularity propertiesof subdifferentialsfor cone convexvector-valuedfunctions.
Rocznik
Strony
257--273
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Mathematics and Information Science, ul. Koszykowa 75, 00-662 Warsaw, Poland
  • Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Mathematics and Information Science, ul. Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
  • 1. ARAGÓN ARTACHO F. J. , GEOFFROY M. H. (2008) Characterization of Metric Regularity of Subdifferentials. Journal of Convex Analysis, 15, 2, 365–380.
  • 2. ARAGÓN ARTACHO F. J. , GEOFFROY M. H. (2014) Metric subregularity of the convex subdifferential in Banach spaces. Journal of Nonlinear and Convex Analysis, 15, 1, 35–47.
  • 3. BEDNARCZUK E. (2007)Stability analysisfor parametricvector optimization problems. Dissertationes Mathematicae, 442, Warszawa.
  • 4. BEDNARCZUK E. (2002) A note on lower semicontinuity of minimal points. Nonlinear Analysis, 50, 285–297.
  • 5. BONNANS J. F., SHAPIRO A. (2000) Perturbation Analysis of Optimization Problems. Springer, New York–Berlin–Heidelberg.
  • 6. DRUSVYATSKIY D., LEWIS A.S. (2013) Tilt stability, uniform quadratic growth, and strong metric regularity of the subdifferential. SIAM Journal on Optimization, 23, 256–267.
  • 7. ISAC G., POSTOLICA V. (1993) The Best Approximation and Optimization in Locally Convex Spaces. Approximation and Optimization, 2, Peter Lang, Frankfurt-Berlin-Bern.
  • 8. JIMÉNEZ B. (2002) Strict efficiency in Vector Optimization. Journal of Mathematical Analysis and Applications, 265, 264–284.
  • 9. PAPAGEORGIOU N. S. (1983) Nonsmooth Analysis On Partially Ordered Vector Spaces: Part 1: Convex Case. Pacific Journal of Mathematics, 107, 2.
  • 10. STAMATE C. (2003) A survey on the vector subdifferentials. Analele Stiintifice Ale Universitatii "Al. I. CUZA", Iasi, s.I. a, Matematica, XLIX, 25–44.
  • 11. VALADIER M. (1972) Sous-Differentiabilité de fonctions convexes à valeurs dans un espace vectoriel ordonné. Mathematica Scandinavica, 30, 65–74.
  • 12. ZALINESCU C., TAMMER, C. GOPFERT, A. and RIAHI, H. (2003) Variational Methods in Partially Ordered Spaces. Springer, New York–Berlin– Heidelberg.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfbbe6dd-bf49-44ef-881a-bc9b09ef77ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.