Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A comparative investigation was made of the effect of catalysis by immobilized Cu([H4]salen) on the hydrothermal conversion of organosolv lignin. The immobilization and hydrogenation of the complexes led to increased yield of liquid products compared with the corresponding unimmobilized and unhydrogenated complexes in catalytic conversion of lignin. In addition, the method of immobilization of the complexes affected the catalytic performance in lignin conversion, in which a higher yield of liquid products was obtained with the SB-immobilized complexes (ship-in-bottle method) than with the IM-immobilized complexes (impregnation method). The yield of liquid products obtained with Cu([H2]salen) at 250°C and 4 MPa O2 in water was 6.00%, compared with 16.80% and 22.08% respectively for Cu([H4]salen)/IM and Cu([H4]salen)/SB. Additionally, the addition of organic solvent had a marked effect on the catalytic performance of Cu([H4]salen), and the highest yield of liquid products (27.06%) was observed with Cu([H4]salen)/SB in water/methanol (80/20, v/v). The total yield of liquid products varied depending on temperature and oxygen pressure, and reached 46.01% under reaction conditions of 280°C and 6 MPa O2 in water/methanol (80/20, v/v). GC-MS analysis showed the main compounds in the liquid products to be phenols, with a yield of 32.16%. Other compounds included alcohols, ketones, aromatics, olefins, cycloalkanes, and alkanes. A mechanism for their formation was proposed based on the oxidation of a lignin model compound under hydrothermal conditions.
Słowa kluczowe
Rocznik
Tom
Strony
81--91
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education of China, Nankai University, Tianjin, China
- Faculty of Chemical Engineering, Kunming University of Science and Technology (Corresponding affiliation), Kunming, China
- Key Laboratory for Solid Waste Management and Environment Safety of Ministry of Education of China, Tsinghua University, Beijing, China
Bibliografia
- Abejón R., Pérez-Acebo H., Clavijo L. [2018]: Alternatives for chemical and biochemical lignin valorization: Hot topics from a bibliometric analysis of the research published during the 2000-2016 period. Processes 6 [8]: 98. DOI:10.3390/pr6080098
- Ambrose K., Hurisso B.B., Singer R.D. [2013]: Recyclable ionic liquid tagged Co(salen) catalysts for the oxidation of lignin model compounds. Canadian Journal of Chemistry 91 [12]: 1258-1261
- Atta-Obeng E., Dawson-Andoh B., Seehra M.S., Geddam U., Poston J., Leisen J. [2017]: Physico-chemical characterization of carbons produced from technical lignin by sub-critical hydrothermal carbonization. Biomass and Bioenergy 107: 172-181
- Badamali S.K., Luque R., Clark J.H., Breeden S.W. [2011]: Co(salen)/SBA-15 catalysed oxidation of a β-O-4 phenolic dimer under microwave irradiation. Catalysis Communications 12 [11]: 993-995
- Besse X., Schuurman Y., Guilhaume N. [2015]: Hydrothermal conversion of lignin model compound eugenol. Catalysis Today 258: 270-275
- Chang J.S., Lin S.D., Huber G. [2017]: Advances in catalysis and bioprocess on conversions of biomass. Journal of The Taiwan Institute of Chemical Engineers 79: 1-162
- Chen Y., Ma S. [2016]: Biomimetic catalysis of metal–organic frameworks. Dalton Transactions 45 [24]: 9744-9753
- Cheng C.B., Wang J.Z., Shen D.K., Xue J.T., Guan S.P., Gu S., Luo K.H. [2017]: Catalytic oxidation of lignin in solvent systems for production of renewable chemicals: A review. Polymers 9 [6]. DOI:10.3390/polym9060240
- Deng W.P., Zhang H.X., Wu X.J., Li R.S., Zhang Q.H., Wang Y. [2015]: Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles. Green Chemistry 17 [11]: 5009-5018
- De Clercq R., Dusselier M., Sels B.F. [2017]: Heterogeneous catalysis for bio-based polyester monomers from cellulosic biomass advances, challenges and prospects. Green Chemistry 19 [21]: 5012-5040
- Díaz-Urrutia C., Hurisso B.B., Gauthier P.M.P., Sedai B., Singer, R.D., Baker R.T. [2016]: Catalytic aerobic oxidation of lignin-derived bio-oils using oxovanadium and copper complex catalysts and ionic liquids. Journal of Molecular Catalysis A: Chemical 423: 414-422
- Elder T., Bozell J.J. [1996]: Cobalt-schiff base complex catalyzed oxidation of parasubstituted phenolics. molecular orbital calculations on phenolic substrates. Holzforschung – International Journal of the Biology, Chemistry, Physics and Technology of Wood 50 [1]: 24-30
- Elder T., Bozell J.J., Cedeno D. [2013]: The effect of axial ligand on the oxidation of syringyl alcohol by Co(salen) adducts. Physical Chemistry Chemical Physics 15 [19]: 7328-7337
- Forchheim D., Hornung U., Kruse A., Sutter T. [2014]: Kinetic modelling of hydrothermal lignin depolymerisation. Waste and Biomass Valorization 5 [6]: 985-994
- Jiang W.K., Wu S.B., Lucia L.A., Chu, J.Y. [2017]: A comparison of the pyrolysis behavior of selected β-O-4 type lignin model compounds. Journal of Analytical and Applied Pyrolysis 125: 185-192
- Lui M.Y., Chan B., Yuen A.K.L., Masters A.F., Montoya A., Maschmeyer T. [2017]: Unravelling some of the key transformations in the hydrothermal liquefaction of lignin. ChemSusChem 10 [10]: 2140-2144
- Monteil-Rivera F. [2016]: Green processes for lignin conversion. Springer, Berlin Heidelberg, Germany
- Shah J., Jan M.R., Adnan [2015]: Tertiary recycling of waste polystyrene using magnesium impregnated catalysts into valuable products. Journal of Analytical and Applied Pyrolysis 114: 163-171
- Shimazaki Y., Yamauchi O. [2011]: Recent advances in metal-phenoxyl radical chemistry. Indian Journal of Chemistry 50 [3-4]: 383-394
- Springer S.D., He J., Chui M., Little R.D., Foston M., Butler A. [2016]: Peroxidative oxidation of lignin and a lignin model compound by a manganese salen derivative. ACS Sustainable Chemistry and Engineering 4 [6]: 3212-3219
- Tang K., Zhou X.F. [2015]: Co(salen) catalysed oxidation of synthetic lignin-like polymer: Pyridine effects. Theoretical Foundations of Chemical Engineering 49 [6]: 877-883
- Tse H.Y., Cheng S.C., Yeung C.S., Lau C.Y., Wong W.H., Dong C., Leu S.-Y. [2019]: Development of a waste-derived lignin-porphyrin bio-polymer with enhanced photoluminescence at high water fraction with wide pH range and heavy metal sensitivity investigations. Green Chemistry 21: 1319-1329
- Wang Y.F., Fan Y.M., Jian J., Pan Y.M., Zhao L., Jing X.P., Zhou S.J., Chen X.H., Du Q., Wang L., Wu XJ., Fu X.K. [2017]: Synthesis of chiral salen Mn(III) complex immobilized on phenoxy-modified AIPS-PVPA as catalysts for epoxidation of olefins. Acta Chimica Sinica 75 [7]: 715-722
- Yang Y., Zhang Y., Hao S.J., Kan Q.B. [2011]: Tethering of Cu(II), Co(II) and Fe(III) tetrahydro-salen and salen complexes onto amino-functionalized SBA-15: Effects of salen ligand hydrogenation on catalytic performances for aerobic epoxidation of styrene. Chemical Engineering Journal 171 [3]: 1356-1366
- Zhou X.F., Tang K. [2016]: Combining laccase with Cu(salen) catalysts for oxidation of kraft lignin. Drewno 59 [198]: 35-47
- Zhou X.F. [2014]: Application of zeolite-encapsulated Cu(II)[H4]salen derived from [H2]salen in oxidative delignification of pulp. Rsc Advances 4 [53]: 28029-28035
- Zhou X.F., Lu X.J. [2016]: Co(salen) supported on graphene oxide for oxidation of lignin. Journal of Applied Polymer Science 133 [44]: DOI: 10.1002/app.44133
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfb77a19-47c1-4c27-828f-215dba193d5d