PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the Collapse Gradient of Deep Water Horizontal Wellbore and the Effects of Mud Chemical Activity and Variation in Water Depth

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wellbore collapse is an instability-event that occurs at low mud density and leads to unfavorable economic project, reaching billions of US dollars. Thus, it is important to accurately determine its value, especially in deepwater horizontal wellbores. The main reasons for nontrivial problems with such wellbores are evident: the shale encountered are anisotropic in nature and possess planes of weakness; they react with water-based mud, generate osmotic stresses, swell, and fall unto the wellbore bottom, thereby increasing the non-productive time. To this end, salts are added to reduce the collapse tendency, but it is not currently known what amount of salt addition maintains stability, and does not lead to wellbore fracture; in deepwater, the current trend in global warming means there is a future concern to the industry. As the climate temperature increases, more ice melts from the polar region, the seawater expands and the sea level rises. How to incorporate the corresponding effect on collapse gradient is scarcely known. This study captures the major concerns stated above into wellbore stability analysis. Following the classical approach for geomechanical analysis, Mogi-Coulomb criterion was combined with a constitutive stress equation comprising contributions from mechanical and osmotic potentials of mud and shale. A sophisticated industry model was used to consider the deepwater effect. The results show significant reduction in collapse gradient as the water depth increases, also, larger difference between the mud and shale chemical activities represents higher complexities in the wellbore. In addition, the reduction in the chemical activities of mud limited to 37.5% of the initial value can be practically safe.
Wydawca
Rocznik
Strony
232--241
Opis fizyczny
Bibliogr. 27 poz., tab., rys.
Twórcy
  • University of Port Harcourt, Department of Petroleum and Gas Engineering, Nigeria
  • Federal University Wukari, Department of Chemical Science, Nigeria
  • University of Port Harcourt, Department of Petroleum and Gas Engineering, Nigeria
Bibliografia
  • [1] Aadnoy, B. S., Ong, S., 2003. Introduction to special issue on Borehole Stability. J Petrol Sci Eng, 38[3-4], 79-82.
  • [2] Adewale Dosunmu, 2013. Fundamentals of Petroleum Geomechanics and Wellbore Stability in Well Design and Construction, SPE Short Course held at SPE/NAICE Conference, Lagos, Nigeria.
  • [3] Al-Ajmi, A.M., 2006.Wellbore stability analysis based on a new true-triaxial failure criterion, TRITA-LWR Ph.D. Thesis 1026.
  • [4] Bourgoyne, A.T., Millheim, K.K., Chenevert, M.E., Young, F.S., 1991. Applied Drilling Engineering, SPE Textbook Series, Vol.5, 246-259.
  • [5] Colmenare L.B., Zoback M.D., 2002, A statistical evaluation of intact rock failure criteria constrained by polyaxial data for five different rocks, IJRMMS, 39, p. 699.
  • [6] Chen, P., Tianshou, M., Hongqua, X., 2015. A Collapse Pressure Prediction Model for horizontal shale gas wells with multiple weak planes, Natural Gas Industry B. 2(1), 101-107.
  • [7] Choi, S-B., Mim, K-B., Kim, T., Jeon, S. 2015. Experimental investigation on anisotropic characteristics of Boreyong shale in Korea. In: 13th ISRM International Congress of Rock Mechanics, 2015. International Society for Rock Mechanics.
  • [8] CSIRO, 2018. “Historical Sea level changes: Last decades”, www.cmar.csiro.ac. Retrieved 2018-08-26.
  • [9] Ewy, R.T., Stankovich, R.J., 2002.”Shale-fluid interaction measured under simulated downhole condition”. SPE/ISRM 78160. In: SPE/ISRM Rock Mech. Conference, Irving, Texas, 20-23 Oct.
  • [10] Fjær, E., Holt, R. M., Horsrud, P., et al., 2008. Petroleum Related Rock Mechanics, 2nd Edition, Elsevier, Amsterdam, pp: 146-149, 323-334.
  • [11] Gholami, R., Moradzadeh, A., Rasouli, V., Hanachi, J., 2013. Practical application of Failure criteria in determining safe mud weight windows in drilling operations, J Rock Mech Geotech Eng. 55. 1-13. http://dx.doi.org/10.1016/jrmge.2013.11.002
  • [12] Haimson, B., Chang, C., 2005. Brittle fracture in two crystalline rocks under true triaxial compressive stresses. Geol Soc Special Pub, [240], 47-59.
  • [13] Kaiser, M.J., 2009. Modeling the time and cost to drill an offshore well, Energy, 34, 1097-1112.
  • [14] Liu, X., Zeng, W., Liang, L., Lei, M., 2016. Wellbore stability analysis for horizontal wells in shale formations. J. Nat. Gas Sci. Eng. 31, 1–8. https://doi.org/10.1016/j.jngse.2016.02.061.
  • [15] Martemyanov, A., Lukin, S., Ovcharenko, Y., Zhukov, V., Andrianov Y., Vereshchagin S., Ereemev A., Konchenko, A., Tatur, O., Yuferova, A., 2017. Analytic Modeling for Wellbore Stability Analysis, Procedia Struct. Integrity. Vol. 6, 292-300. https://doi.org/10.1016/j.prostr.2017.11.045
  • [16] Maury, V. M., Sauzay, J. M. G., 1987. Borehole instability: Case histories, rock mechanics approach and results. In: Proc SPE/ IADC Drilling Conf, New Orleans, March 15-18. SPE 16051.
  • [17] McLean, M., Addis, M., 1990. Wellbore stability analysis: a review of current methods of analysis & their field application. In: Proc IADC/SPE Drilling Conf, Houston, Feb. 27-Mar 2. SPE 19941.
  • [18] Mitchell, R.F., Miska, S.Z., 2011. FUNDAMENTALS OF DRILLING ENGINEERING, SPE TEXTBOOK SERIES, Vol 12, pp. 61-79.
  • [19] Mody, F.K., Hale, A.H., 1993. “Borehole stability model to couple the mechanics and chemistry of drilling fluid shale interaction”. J. Pet Tech. 45, 1093-1101.
  • [20] Morgan, S., Einstein, H., 2014. The effect of bedding plane orientation on crack propagation and coalescence in shale. In: 48th US Rock Mechanics/Geomechanics Symposium. ARMA.
  • [21] Mohammad, E.Z., 2012. Mechanical and physical-chemical aspects of wellbore stability during drilling operations. J. Petrol. Sci. Eng., 82-83: 120-124.
  • [22] Nick, S., 2019. World Bank: Global gas flaring up 3% in 2018. Oil and Gas Journal. www.ogj.com.
  • [23] Shi, X., Yang, X., Meng, Y., Li, G., 2016. Wellbore Stability Analysis in Chemically Active Shale Formations, Thermal Science, 20 (3), 911-917.
  • [24] Song, I., Haimson, B. C., 1997. Polyaxial strength criteria and their use in estimating in situ stress magnitudes from borehole breakout dimensions. IJRMMS, 34 [3-4].
  • [25] Zhang, Q., Wenyu, J., Xiangyu, F., 2015. A review of the shale wellbore stability mechanism based on mechanical-chemical coupling theories, Petroleum 1(2015) 91-96.
  • [26] Zhou, J., He, S., Tang, M., Huang, Z., Chen, Y., Chi, J., Zhu, Y., Yuan, P., 2018. Analysis of wellbore stability considering the effects of bedding planes and anisotropic seepage during drilling horizontal wells in the laminated formation, JPSE, 170 (2018), 507-524.
  • [27] Zhou, S. H., Hillis, R. R., Sandiford, M., 1996. On the mechanical stability of inclined wellbores. SPE Drilling Comp, 11 [2], 67-73.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfabf2d1-f11a-4821-b8d3-6bc69da938a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.