PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pr-doped TiO2. The effect of metal content on photocatalytic activity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pr-TiO2 nanoparticles were prepared by using a sol-gel method. As-prepared samples were characterized by BET measurements, X-ray powder diffraction analysis (XRD) and UV-Vis spectra. Visible and ultraviolet light photocatalytic activity of the sample was studied by photodegradation of phenol, while considering the influence of the dopant concentration. TiO2 doped with 0.25 mol% of praseodymium showed the highest photocatalytic activity under visible light irradiation. Pr-TiO2 had anatase structure. The surface area was higher for powders with higher content of rare earth metal ion, and ranged from 121 to 150 m2/g. Red shifts of absorption edge toward the visible region were observed for the doped samples compared to pure TiO2.
Rocznik
Strony
515--524
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
  • Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, Spain
autor
  • Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-952 Gdansk, Poland
autor
  • Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
Bibliografia
  • 1. BINGHAM S., DAOUD W., 2011, Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping, J. Mater. Chem. 21, 2041–2050.
  • 2. BUSCA G., BERARDINELLI S., RESINI C., ARRIGH, L., 2008, Technologies for the removal of phenol from fluid streams: A short review of recent developments, J. Hazard. Mater. 160, 265–288.
  • 3. CACCIOTTI I., BIANCO A., PEZZOTTI G., GUSMANO G., 2011, Terbium and ytterbium-doped titania luminescent nanofibers by means of electrospinning technique, Mater. Chem. Phys. 126, 532–541.
  • 4. CHIOU C.-H., JUANG R.-S., 2007, Photocatalytic degradation of phenol in aqueous solutionsby Pr-doped TiO2 nanoparticles, J. Hazard. Mater. 149, 1–7.
  • 5. GORSKA P., ZALESKA A., KOWALSKA E., KLIMCZUK T., SOBCZAK J. W., SKWAREK E., JANUSZ, W., HUPKA, J., 2008, TiO2 photoactivity in Vis and UV light: the influence of calcination temperature and surface properties, Appl. Catal., B 84, 440–447.
  • 6. GRABOWSKA E., RESZCZYNSKA J., ZALESKA A., 2012a, Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: A review, Water Res. 46(17), 5453–5471.
  • 7. GRABOWSKA E., SOBCZAK J., GAZDA M., ZALESKA A., 2012b, Surface properties and visible light activity of W-TiO2 photocatalysts prepared by surface impregnation and sol-gel method, Appl. Catal., B 117–118, 351–359.
  • 8. HASSAN M. S., AMNA T., YANG O.-B., KIM H.-C., KHIL M.-S., 2012, TiO2 nanofibers doped with rare earth elements and their photocatalytic activity, Ceram. Int. 38, 5925–5930.
  • 9. HILL R. J., HOWARD C. J., 1986, The High Score plus Rietveld alghoritm is based on the source codes of the program LHPM, A computer program for Rietveld analysis of fixed wavelength X-ray and neutron diffraction patterns, Australian Atomic Energy Commission Research Report M112.
  • 10. LI H., ZHENG K., SHENG Y., SONG Y., ZHANG H., HUANG J., HUO Q., ZOU H., 2013, Facile synthesis and luminescence properties of TiO2:Eu3+ nanobelts, Opt. Laser Technol. 49, 33–37.
  • 11. LIANG C.-H., HOU M.-F., ZHOU S.-G., LI F.-B., LIU C.-S., LIU T.-X., GAO Y.-X., WANG X.-G., LÜ, J.-L., 2006, The effect of erbium on the adsorption and photodegradation of orange I in aqueous Er3+-TiO2 suspension., J. Hazard. Mater. 138, 471478.
  • 12. LIANG C.-H., LIU C.-S., LI F.-B., WU F., 2009, The effect of praseodymium on the adsorption and photocatalytic degradation of azo dye in aqueous Pr3+-TiO2 suspension, Chem. Eng. J. 147, 219–225.
  • 13. NISCHK M., MAZIERSKI P., GAZDA M., ZALESKA A., 2013, Ordered TiO2 nanotubes: The effect of preparation parameters on the photocatalytic activity in air purification process, Appl. Catal., B 144, 674–685.
  • 14. PARIDA K. M., SAHU N., 2008, Visible light induced photocatalytic activity of rare earth titania nanocomposites, J. Mol. Catal. A: Chem. 287, 151-158.
  • 15. PEDRONI M., PICCINELLI F., POLIZZI S., SPEGHINI A., BETTINELLI M., HARO-GONZÁLEZ P., 2012, Upconverting Ho-Yb doped titanate nanotubes, Mater. Lett. 80, 81-83.
  • 16. RANJIT K. T., WILLNER I., BOSSMANN S. H., BRAUN A. M., 2001, Lanthanide oxide-doped titanium dioxide photocatalysts: Novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid, Environ. Sci. Technol. 35, 1544-1549.
  • 17. RESZCZYNSKA J., IWULSKA A., ŚLIWINSKI G., ZALESKA A., 2012, Characterization and photocatalytic activity of rare earth metal-doped titanium dioxide Physicochem. Probl. Miner. Process. 48(1), 201-208.
  • 18. SHANG Q., YU H., KONG X., WANG H., WANG X., SUN Y., ZHANG Y., ZENG Q., 2008, Green and red up-conversion emissions of Er3+-Yb3+ co-doped TiO2 nanocrystals prepared by sol-gel method, J. Lumin. 128, 1211-1216.
  • 19. SHENG Y., ZHANG L., LI H., XUE J., ZHENG K., GUO N., HUO Q., ZOU H., 2011, Photoluminescence of TiO2 films co-doped with Tb3+/Gd3+and energy transfer from TiO2/Gd3+ to Tb3+ ions, Thin Solid Films 519, 7966-7970.
  • 20. SHI H., ZHANG T., AN T., LI B., WANG X., 2012, Enhancement of photocatalytic activity of nano-scale TiO2 particles co-doped by rare earth elements and heteropolyacids, J. Colloid Interface Sci. 380, 121-127.
  • 21. SU W., CHEN J., WU L., WANG X., WANG X., FU X., 2008, Visible light photocatalysis on praseodymium(III)-nitrate-modified TiO2 prepared by an ultrasound method, Appl. Catal., B 77, 264-271.
  • 22. TANG J., CHEN X., LIU Y., GONG W., PENG Z., CAI T., JIN L., DENG Q., 2012, Europium-doped mesoporous anatase with enhanced photocatalytic activity toward elimination of gaseous methanol, J. Phys. Chem. Solids 73, 198-203.
  • 23. WANG C., YANHUI A., WANG P., HOU J., QIAN J., 2010, Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 hollow spheres, Appl. Surf. Sci. 254, 227-231.
  • 24. WU J., LIU Q., GAO P., ZHU Z., 2011, Influence of praseodymium and nitrogen co-doping on the photocatalytic activity of TiO2, Mater. Res. Bull. 46, 1997-2003.
  • 25. YAN P., JIANG H., ZANG S., LI J., WANG Q., WANG Q., 2013, Sol-solvothermal preparation and characterization of (Yb, N)-codoped anatase-TiO2 nano-photocatalyst with high visible light activity, Mater. Chem. Phys. 139, 1014-1022.
  • 26. YANG J., DAI J., LI J., 2011, Synthesis, characterization and degradation of Bisphenol A using Pr, N co-doped TiO2 with highly visible light activity, Appl. Surf. Sci. 257, 8965–8973.
  • 27. ZHOU W., HE Y., 2012, Ho/TiO2 nanowires heterogeneous catalust with enhanced photocatalytic properties by hydrothermal synthesis method, Chem. Eng. J. 179, 412–416.
  • 28. ZIELINSKA-JUREK A., WALICKA M., TADAJEWSKA A., LACKA I., GAZDA M., ZALESKA A., 2010, Preparation of Ag/Cu-doped titanium (IV) oxide nanoparticles in w/o microemulsion, Physicochem. Probl. Miner. Process. 45, 113–126.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfab8521-5aed-492f-ae9c-eda26edffbde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.