PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the Identification of Local Structural Defects in Composite Thin-Walled Structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presented work considers the issue of the usefulness of alternative methods aimed at quickly and effectively identifying the local damage to the thin-walled composite load-bearing structures. Two ways of identifying destruction were considered, based on the assumption that the damage that occurs during operation causes local changes in the system rigidity. The first method is based on strain gauges. It consists of embedding strain gauges in the structure at the stage of composite production and monitoring of deformation during its life cycle. The second of the concepts under consideration is based on modal analysis, carried out using a modal hammer. On the example of the plate band, experimental studies supported by numerical analysis were carried out. The obtained research results and numerical analyses allowed for the formulation of a number of conclusions, mainly in terms of focusing on further research.
Twórcy
  • Department of Aircraft and Aircraft Engines, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów,
  • Department of Aircraft and Aircraft Engines, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów,
  • Department of Aircraft and Aircraft Engines, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów,
Bibliografia
  • 1. Aloisi, S., U. Galietti, and C. Pappalettere. Strain measurement in composite materials using embedded strain gauges. Key Engineering Materials, 1997: 251-260.
  • 2. Arbocz, J. Post-buckling behavior of structures. Numerical techniques for more complicated structures. In Lect. Notes Phys. 1985.
  • 3. Bakunowicz, J., T. Kopecki, T. Lis, and P. Mazurek. Effect of stiffeners on nature of post-critical deformations of thin-walled composite aircraft structures: A combined numerical-experimental study. 2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE), 2016.
  • 4. Belhouideg, S., and M. Lagache. Effect of embedded strain gage on the mechanical behavior of composite structures. Journal of Modern Materials, 2017.
  • 5. Neha, C., Martinez-Sanchez, M., Soutis, C., and Gresil, M. Early damage detection in composites by distributed strain and Acoustic Event Monitoring. Procedia Engineering, 2017.
  • 6. Diamanti, K., and C. Soutis. Structural health monitoring techniques for aircraft composite structures. Prog. Aero. Sci., 2010, 46(8) ed.
  • 7. Døssing, Ole. Structural Testing. Part II: Modal Analysis and Simulation. Brüel&Kjær, 1988.
  • 8. Doyle, J.F. Nonlinear Analysis of Thin-Walled Structures. Luxembourg: Springer, 2001.
  • 9. Ewins, D.J. Modal Testing: Theory, Practice and Application. Wiley, 2009.
  • 10. Hatch, Michael R. Vibration Simulation Using MATLAB and ANSYS. Chapman and Hall, 2000.
  • 11. Hoffmann, K. An Introduction to Stress Analysis using Strain Gauges. Hottinger Baldwin Messtechnik GmbH, 1987.
  • 12. Jones, R. Mechanics Of Composite Materials, 2nd ed. Philadelphia, PA, USA: Taylor & Francis, 1999.
  • 13. Kopecki, T., J. Bakunowicz, and T. Lis. Post-critical deformation states of composite thin-walled aircraft load-bearing structures. Journal of Theoretical and Applied Mechanics, 2016, 54 (1) ed.: 195-204.
  • 14. Kopecki, T., P. Mazurek, and T. Lis. Experimental and Numerical Analysis of a Composite Thin- Walled Cylindrical Structures with Different Variants of Stiffeners, Subjected to Torsion. Materials, 2019, 19 ed.
  • 15. Kopecki, T., T. Lis, and P. Mazurek. Post-critical deformation of thin-walled load-bearing aircraft structure representing fragment of the one-way torsion box. Advances in Science and Technology Research Journal, 2018, 3 ed.: 203-209.
  • 16. Kopecki, T., T. Lis, P. Mazurek, and J. Bakunowicz. Buckling Deformation of Thin Layer Coverings of Small Curvatures Used in Aircraft Construction. Advances in Science and Technology Research Journal, 2018, 1 ed.: 293-302.
  • 17. Kucharski, T. System pomiaru drgań mechanicznych. Warszawa: WNT, 2002.
  • 18. Liang, K., Q. Sun, and Y. Zhang. Nonlinear buckling analysis of variable stiffness composite plates based on the reduced order model. Compos. Struct., 2018, 206 ed.
  • 19. Mamalis, A.G., D.E. Manolakos, G.A. Demosthenous, and M.B. Ioannidis. Crashworthiness of Com-posite Thin-Walled Structures. CRC Press, 2019.
  • 20. Niu, M.C. Composite Airframe Structures, 3rd ed. Hong Kong: Conmilit Press Ltd., 2010.
  • 21. Orkisz, M., Ł. Święch, and J. Zacharzewski. Fatigue tests of motor glider wing’s composite spar. Eksploatacja i Niezawodność – Maintenance and Reliability, 2012, 14 (3) ed.
  • 22. Quinn, D., A. Murphy, W. McEwan, and F. Lemaitre. Stiffened panel stability behaviour and perfor-mance gains with plate prismatic sub-stiffening. Thin Walled Struct., 2009, 47 ed.
  • 23. Schaaf, K., B. Cook, F. Ghezzo, A. Starr, and S. Nemat-Nasser. Mechanical properties of composite materials with integrated embedded sensor networks. Smart Structures and Materials, 2005.
  • 24. Skopinski, T., W. Aiken, and W. Huston. Calibration of strain-gauge installation in aircraft structures for the measurements of flight loads. NASA Technical Report, 1953.
  • 25. Święch, Ł. Experimental and Numerical Studies of Low-Profile, Triangular Grid-Stiffened Plates Sub-jected to Shear Load in the Post-Critical States of Deformation. Materials, 2019, 12 ed.
  • 26. Takeda, S., Y. Aoki, T. Ishikawa, N. Takeda, and H. Kikukawa. Structural health monitoring of com-posite wing structure during durability test. Comp. Struct., 2007, 79(1) ed.
  • 27. Wysmulski, P., H. Dębski, P. Różyło, and K. Falkowicz. A study of stability and post-critical behavior of thin-walled copmposite profiles under compression. Eksploatacja i Niezawodność - Maintenance and Reliability, 2016, 18 (4) ed.
  • 28. Theory Reference for the Mechanical APDL and Mechanical Applications. ANSYS, Inc., 2009.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfa7c26f-afb0-4355-9960-3814eb96b078
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.