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A reliAbility evAluAtion study 
bAsed on competing fAilures for AircrAft engines

bAdAniA dotyczące oceny niezAwodności silników lotniczych 
w opArciu o uszkodzeniA konkurujące

Aircraft engine is a complex and repairable system, and the diversity of its failure modes increases the difficulty of reliability evalu-
ation. It is necessary to establish a dynamic relationship among data, failure mode and system reliability, to achieve the scientific 
reliability evaluation for aircraft engines. This paper has used data fusion method to establish reliability evaluation models respec-
tively for performance degradation failures and sudden failures. Furthermore, these two models have been integrated on the basis 
of competing failures’ mechanism. Bayesian model averaging has been used to analyze the impacts of performance degradation 
failures and sudden failures on aircraft engines’ reliability. As a result of above, the goal of an accurate evaluation of the reliability 
for aircraft engines has been achieved. Example shows the effectiveness of the proposed model.
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Silnik samolotu to złożony system naprawialny, w którym  różnorodność przyczyn uszkodzeń zwiększa trudność oceny niezawod-
ności. Dlatego też istnieje konieczność ustalenia dynamicznych związków pomiędzy danymi, przyczynami uszkodzenia i niezawod-
nością systemu, których znajomość pozwoliłaby przeprowadzać  naukową ocenę niezawodności silników lotniczych. W prezento-
wanej pracy wykorzystano metodę fuzji danych do opracowania modeli oceny niezawodności w zakresie uszkodzeń wynikających 
z obniżenia charakterystyk oraz uszkodzeń nagłych. Ponadto, opracowane modele zintegrowano na podstawie mechanizmu uszko-
dzeń konkurujących. Do analizy wpływu dwóch omawianych typów uszkodzeń na niezawodność silników lotniczych wykorzystano 
procedurę bayesowskiego uśredniania modeli. Dzięki powyższym krokom, osiągnięto założony cel dokładnej oceny niezawodności 
silników samolotowych. Przykład pokazuje skuteczność proponowanego modelu.

Słowa kluczowe: silnik lotniczy, ocena niezawodności, uszkodzenia konkurujące, bayesowskie uśrednianie modeli, 
fuzja danych.
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1. Introduction

The level of the aircraft engines’ reliability affects flight safety 
directly. Estimating the reliability level scientifically and objectively 
is the foundation of reliability management and decision-making of 
maintenance for aircrafts. The difficulties of reliability evaluation for 
aircraft engines lie in two aspects. First, there are less failure data and 
rich condition monitoring data. Second, there is a problem of compet-
ing failures caused by the diversity of failure modes arising from the 
complexity of the system. 

Extracting information about reliability from a large amount of 
monitoring information is a common concern issue in the current 
theoretical and engineering field. Researchers in the United States, 
Britain, Australia and other countries promote using HUMS (health 
and usage monitoring systems,) to monitor the health and use of en-
gines, structure, etc, which can provide full-time health information 
and on-line monitoring, in order to make the diagnosis and prediction 
of the remaining life of the equipment, structure and operation [7]. HP 

Engine Company has developed an advanced life prediction system 
for gas turbine engines, which integrates fault prognostics and health 
management capacity [16] .Volponi [18] used data fusion technology 
for aircraft engine health management. Niu et al. [10] employed data 
fusion strategy for improving condition monitoring, health assessment 
and prognostics. Cobel [6] proposed using data fusion method, which 
fuses condition monitoring data and fault data effectively, to predict 
the remaining life, used genetic algorithm to select optimal monitor-
ing parameters, applied GPM (General path model, GPM) to achieve 
that transform the traditional reliability analysis based on failure time 
to analysis based on failure process.

For complex systems, the reliability evaluation of single failure 
mode or single point of failure is an ideal assumption. But in terms 
of practical situation of aircraft engines, the failure modes are vari-
ous and multi-failure modes often coexist. The failure modes can be 
divided into degradation failure and sudden failure only on the basis 
of major categories of classification. Different failure modes inter-
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act with each other, constantly change their forms of expression and 
mechanism of action in different stages of the running system. It is a 
problem of competing failures in essence, increasing the complexity 
of the reliability evaluation. The problem of competing failures has 
drawn a lot of concern in the field of reliability engineering. Bedford 
[2] analyzed the characters of reliability evaluation models for vari-
ous competing failures from a statistical point. Lehmann [9] surveyed 
some approaches to model the relationship between failure time data 
and covariate data like internal degradation and external environment 
models. Bagdonavičius et al [1] made use of the half updating process 
of the linear degradation model to study the non-parameter estimation 
method of competing failure model, and to simplify the using decom-
position method. Pareek et al. [11] studied the problem of censored 
data processing for competing failures. Bedford et al. [3] presented 
a competing risks reliability model for a system that releases signals 
each time on its condition deteriorates and provided a framework for 
the determination of the underlying system time from right-censored 
data. Su et al. [17] regarded the incidence of sudden failure as the 
function of performance degradation amount, made use of Wiener 
process to describe the degradation process, and proposed a reliability 
evaluation model for competing failures. Bocchetti et al. [4] proposed 
a competing risk model to describe the reliability of the cylinder lin-
ers of a marine Diesel engine, in which the wear process is described 
by through a stochastic process and the failure time due to the ther-
mal cracking is described by the Weibull distribution. Park et al. [12] 
and Kundu et al. [8] considered the analysis of incomplete data in the 
presence of competing risks among several groups. Chen et al. [5] 
developed methods for competing risks when individual events are 
correlated with clusters. Wang et al. [19] used Bivariate exponential 
models to analysis of competing risks data involving two correlated 
risk components. Xing et al. (2010) [20] presented a combinatorial 
method for the reliability analysis of system subject to competing 
propagated failures and failure isolation effect. Salinas-Torres et al. 
(2002) [15] and Polpo et al. (2011) [14] proposed the Bayesian non-
parametric estimator of the reliability of a series system under a com-
peting risk scenario. Peng et al. (2011) developed reliability models 
and preventive maintenance policies for systems subject to multiple 
Dependent Competing Failure Process (MDCFP) .

For the problem of aircraft engines’ competing failures, the infor-
mation fusion technology will be referenced to the aircraft engines’ 
reliability modeling and the input variables of the reliability model 
will be determined by information fusion. The impacts of compet-
ing failure modes on system reliability will be analyzed through data. 
This paper will use Bayesian model averaging method to study the 
data, to select the optimal model, and to propose a reliability evalua-
tion model for aircraft engines based on competing failures.

2. The modeling framework of reliability evaluation for 
aircraft engines based on competing failures

2.1. The modelling process of reliability evaluation based on 
competing failures

This paper intends to combine the recent research results concern-
ing reliability evaluation and competing failures based on information 
fusion, and to propose reliability evaluation methods based on com-
peting failures for aircraft engines. Its characteristics are reflected in 
the following aspects. First, it takes into account both the characteris-
tics of information and failure mechanism, establishing the reliability 
evaluation models respectively for the performance degradation and 
sudden failures. Second, in the case of sudden failures and perform-
ance degradation failures coexist, the reliability evaluation model 
based on competing failures is established. Third, the impacts of dif-

ferent failure modes’ mechanism on the reliability are analyzed. The 
modeling process is shown in Fig.1.

2.2. The reliability modeling methods of aircraft engines 
based on competing failures

The reliability modeling methods of aircraft engines based on 
competing failures include the following three-part.

2.2.1. The reliability evaluation of performance degradation fail-
ures for aircraft engines

The performance monitoring of aircraft engines includes three 
categories, namely, gas path performance monitoring, oil monitoring 
and vibration monitoring. The engines’ performance degradation (or 
reduced efficiency) will usually be reflected in changes of monitor-
ing parameters. The main monitoring parameters are: the turbine gas 
temperature (EGT), fuel flow (WF), oil pressure (OP), oil tempera-
ture (OT) and the oil consumption rate (OCR), the deviation of the 
low-pressure rotor vibration value (DLPRV) and high-pressure rotor 
vibration value deviation (DHPRV) and so on. The excessive EGT, 
the WF increasing, the larger DLPRV and DHPRV, the higher OCR all 
can reflect the performance degradation of aircraft engines. Compre-
hensively using above parameters to reflect the performance degrada-
tion of aircraft engines from the multi-dimensional perspective will 
be more realistic. This paper use Bayesian linear model to fuse above 
monitoring information, and its advantages are reflected in the fol-
lowing aspects. The Bayesian linear model, which foothold is expec-
tation, reflects the uncertainty in the form of variance. The Bayesian 
linear model can well represent the randomness of monitoring param-
eters and performance degradation variables. It can fuse the impacts 
of various sources of data on the performance degradation, while tak-
ing fully into account the correlation between the data to avoid the 
phenomenon of information overlap. It has a learning function and it 
can fully fuse the data of different timing points. Noise parameters can 
be designed to avoid performance degradation’s uncertainty caused 
by the uncertainty of the monitoring data results. It’s worthy noting 
that, the Bayesian linear model can also fuse various types of nonlin-
ear parameters through appropriate transformation.

Fig 1. The flow diagram of reliability evaluation for aircraft engines based 
on competing failures
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2.2.2.  The reliability evaluation of sudden failures for aircraft 
engines

The reliability analysis model based on the sudden failures in-
cludes two aspects. First, the reliability analysis of sudden failures, 
which is a reliability analysis problem of typical small-sample because 
the aircraft engine is high-reliability system and the fault information 
is rarely collected. The second are the correlation analysis between 
degradation failures and sudden failures, and quantifying the impacts 
of degradation failures on sudden failures. The reliability of sudden 
failures for aircraft engines is achieved by describing the law of its 
life changes. For the choice of sudden failures’ distribution form, the 
final form is selected mainly through the combination of the failure 
mechanism analysis, following the fitting of the data validation and 
uncertainty analysis on the basis of the failure mechanism analysis. 
Because Weibull distribution model itself can reflect the impacts of 
the performance degradation on the law of life changes, so it is gener-
ally regarded as the main choice. The condition monitoring parameters 
of aircraft engines can not directly reflect the impacts that they pose 
on the sudden failures, but the performance degradation of aircraft 
engines can be extracted from the condition monitoring parameters. 
And then, the link between sudden failures and performance failures 
can be established by transforming the performance degradation as 
the shape parameters of the Weibull distribution appropriately.

Notice the actual situation that there are insufficient or even no 
failure data, this paper uses Bayesian methods to establish reliability 
analysis model of sudden failures. 

2.2.3. The reliability evaluation of competing failures for aircraft 
engines

For the two major categories of failures, the research focused on 
the analysis of the relationship between sudden failures and perform-
ance degradation failures. For the mechanisms of the two failures 
between each other, the competing failures is usually regarded as a 
series model in the reliability analysis, but the reliability will be un-
derestimated by using this method because a variety of competing 
causes of failures can not be real-time and simultaneous. If calculat-
ing the remaining life or reliability of different failures modes respec-
tively and take the lowest as the reliability of competing failures, the 
reliability will be overestimated because to some extent the character-
istics that a variety of competitive modes coexist in a certain period 
of time will be ignored. Competing failures needs considering the two 
failures modes’ mechanisms comprehensively, but knowing how to 
act and change between the two modes can’t rely solely on the failures 
mechanism analysis, the data is the key to understand it. To study the 
mechanism of two competing failures, this paper will use Bayesian 
model averaging method. Bayesian model averaging (Bayesian model 
averaging, BMA) is a probability forecast approach that is proposed 
recently and is used in multi-mode collection. The forecast probability 
density function (PDF) of a particular variable in BMA, is a weighted 
average of a single model forecast probability distribution after devia-
tion correction, and the weight is the corresponding model’s posterior 
probability which represents each model’s relative forecast skill in the 
model training phase. The secondary use of condition monitoring data 
and event data can be achieved through BMA technology. And this 
not only solves the problem of reliability analysis based on a single 
failures mode, but also solves the problem of interaction of multiple 
failures modes. Based on the data re-learning, the goal of an accurate 
analysis of civil aircraft system reliability can be achieved. 

3. The problem description of competing failures for 
aircraft engines

The problem description of competing failures for aircraft engines 
includes three aspects. The first is the process description of perform-
ance degradation failures, following the sudden failures description. 
And the third is competing failure description based on the sudden 
failures and performance degradation failures.

3.1. Performance degradation failures

Let ( )y t  be the amount of performance degradation failures at 
time t and l be the failures threshold. When ( )y t l≥ , aircraft engines 
will come up with performance degradation failures. Aircraft engines’ 
performance degradation is irreversible, that is, the performance grad-
ually decreases and the amount of performance degradation is con-
stantly increasing with the use of time. Therefore, the Gamma process 
can be applied to describe the degradation process. Assume that 0y is 

aircraft engines’ initial performance, so ( ) ( ) ( )0w t y t y t= −  repre-
sents the accumulated deterioration at time t . Because degradation 
amount increases monotonically, for any it , jt , if j it t> , there must 
be w t w tj i( ) − ( ) > 0 . Assume that degradation amount ( )w t  obey

Ga tµ λ( )( ), , its density function can be expressed as follows:
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 is Gamma function.

Generally assume that the scale parameter does not change in a 
performance monitoring process. Shape parameter changes with the 
change of the degradation process, because the extent and rate of the 
performance degradation experience an increasing trend, so we as-
sume that shape parameter is proportional with expected degradation 
degree and time power, that is:
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 f t
kt

e Iw

kt
kt xv

ξ α λ
λ

ζ ζ
ν

ν
λ, , ,( )( ) = ( ) ( )− −

∞( )
Γ

1
0  (3) 

Based on the theory of system reliability, the reliability for degra-
dation failures can be depicted as following:

 R t P T t P w t( ) = >{ }⇒ ( ) <{ }ε  (4)

where, ε is the failure threshold for performance degradation of an 
aircraft engine. 
Then, the reliability evaluation for performance degradation of an 
aircraft engine can be depicted as following:
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3.2. Sudden failures

The Weibull distribution is widely used in engineering fields. 
Through assigning different values to its parameters, it can fuse the 
impact of performance degradation on the law of life changes, so to 
some extent, it can describe the relationship between performance 
degradation failures and sudden failures.

Assume that the law of life changes for sudden failure of aircraft 
engines complies with the Weibull distribution, it can be expressed 
as:

 f t t t; , expβ γ
γ
β β β

γ γ

( ) = 







 −























−1

, if 0t >  (6)

Among that, β>0, γ>0 represent scale parameter and shape param-
eter respectively. And γ characterize the performance degradation.

When the shape parameter is known, the sudden failure reliability 
evaluation can be transformed to estimate scale parameter β. It is as-
sumed that the scale parameter β has a conjugate gamma prior, that is:
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where c and d are scale parameter’ conjugate prior hyper parameters. 
The values of c and d can be calculated through the acquisition of the 
scale parameter’ prior mean and variance. Further, it can calculate the 
posterior mean and variance of the scale parameter, to achieve the 
reliability evaluation of the sudden failure.

More generally, the conditional probability of sudden failure on 
the amount of degradation can be determined through data learning, in 
order to analyze the impact of degradation failure on sudden failure. 
Because the characteristics distribution of degradation amount is a 
function of time, so the process above can be simplified. Reliability 
can be calculated by the joint distribution function which based on the 
sudden failure’s conditional probability and probability distribution, 
the relevant solution can use Monte Carlo simulation method.

The reliability of sudden failure can be expressed as follows:

 
R f t r dts

Ts= − ( )∫1
0

, ,β  (8)

3.3. Competing failures

The basic assumptions for competing failure of aircraft engines 
are as follows.

There are two random variables I X  and Y , where Y  denote the 
degradation failure and X  denote sudden failure. X and Y are 
competing failures for causing failure.

The performance degradation failure is irreversible.II 

There is correlation between performance degradation failure and III 
the random variables of sudden failure.
So in the case of sudden failure, the reliability of aircraft engines 

in competing failures can be expressed as follow:

R t P T t P T t T t y d f yc g s s
t

w( ) = >( ) = > >( ) = − ( )





(∫ ∫, exp , ,
0 0
ε λ τ τ α λ))dy   (9)

where ( )cR t  is the reliability under the competing failures at time
t . Eq. (8) is a problem of high dimensional integral calculation, the 

calculation itself has no difficulty. However, competing failure is not 
synchronous, and the data of correlation between competing failure 
and sudden failure can not be collected. In a certain degree, perform-
ance degradation failure and sudden failure can not play a role at the 
same time; maybe one failure mode plays the main part. Assume that 
the corresponding reliability evaluation model of the performance 
degradation failure is 1M , the corresponding reliability evaluation 
model of the sudden failure is 2M , Eq. (9) for the reliability evalua-
tion model based on the competing failures can be expressed as 3M . 
For the observational data collected, the expression of the various fail-
ure modes can be obtained through the study of observational data.
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Conditional probability density function ( )k kg D M  represents 

the conditional probability of observed variable D  which based on 
model kM . kw represents the posterior probability as the k th model 

is the best model, and kw is non-negative and satisfies 
1

1
N

k
k

w
=

=∑ . The 

expression represents the relative contribution of each model to civil 
aircraft system reliability evaluation in the model training phase.

4. Reliability evaluation algorithm for aircraft engines

4.1. Reliability evaluation algorithm for performance degra-
dation failures

Through the fusion of condition monitoring information, the I 
expectation and variance of the degree of aircraft engines’ perfor-
mance degradation can be extracted to calculate the results;

 Assume that the monitoring parameters of aircraft engines’ perfor-
mance degradation are expressed by matrix [ ]1 2, , , k=X X X X , 

where k  represents monitoring parameters, e  is deviation. The 
relationship between performance degradation and condition mo-
nitoring parameters can be expressed by the following stochastic 
equation:
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 ei is independent between each other and obey the normal distri-
bution N 0 2,σ( ) , and σ2 is known. 

	 θ	can be calculated through monitoring parameters. The mean is 
E(θ). And C(θ) is covariance matrix. 

 For monitoring parameters, generally assume that they are in 
line with the inverse Gaussian distribution. Through continuous 
monitoring, the mean and variance are also constantly updating. 
The mean and covariance matrix can be expressed as follows. 

̂
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E C XC X C Xθ µ θ θ µθ θx y X ye,( ) = + ( ) ( ) +( ) −( )

−T T 1
   (12) 

 
C C C X XC X XCθ θ θ θ θx y Ce,( ) = ( ) − ( ) ( ) +( ) ( )

−T T 1
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 With the increasing observational information, the Eq.(12), (13) 
can be used repeatedly to update the fusion results of the monito-
ring information for the performance degradation. 

Making use of the calculations results of mean and variance to II 
calculate the scale parameter λ.

 
E w t ktv

( )( ) =
λ  

(14)

 
Var w t ktv

( )( ) =
λ2

 
(15)

 Assume that μj, σj respectively represents the mean and variance 
of the accumulated degradation collected in the j th time. By the 
Eq. (14), (15) shows:

 λ̂
µ

σ
j

j

j
= 2

ˆ

ˆ
 (16)

 From Eq. (16), we can know that λ is changing in the different 
monitoring stages.

Calculating the parameter III k and v  of the shape parameter α(t).

 α(t) is a time-varying parameter. According to monitoring the 
information’s mean and collecting the monitoring information’s 
time for several times, this model can be linear regressed after 
calculating the (15)’s logarithm to get k̂  and v̂ .

Calculating performance reliabilityIV 

 Put the relevant parameters into the Eq. (5), the performance relia-
bility can be calculated.

4.2. Reliability evaluation algorithm for sudden failures

Calculating the hyper parameters of scale parameter I β’s prior di-
stribution

 By the Eq. (7), the prior mean and variance of the scale parameter  
β are:

 E c
d

β( ) =  (17)

 σ β2
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 (18)

 The reliability of sudden failure at time 
0Rt is known, and then β 

can be expressed as:

 β =
( )













t

R
R

r

r

0

1 0
1

1

ln / /

/

 (19)

 Put β’s mean and variance into Eq. (17) and (18), the hyper para-
meters ĉ  and d̂  can be calculated.

Calculating the posterior mean and variance of the scale parame-II 
ters

 Collect the observational data of sudden failures
t n t n t nm m1 1 2 2, , , , , ,( ) ( ) ( ){ } , where it  represents the happen 

time of sudden failures, and in  represents the number of samples 
of sudden failures. The hyper parameters ĉ  and d̂  are known, 
and then the posterior mean and variance of the scale parameters 
can be expressed as follows:
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Calculating the reliability of sudden failuresIII 

 Put γ̂  which got by Eq. (11) and β̂ which got by Eq. (19) into 
Eq. (8), the reliability of sudden failures can be calculated.

4.3. Reliability evaluation algorithm for competing failures

Description of the possibility of alternative modelI 

 The possibility of the model depends on the fitting function of the 
predicted values and experimental data for each model. And it can 
be expressed by deviation function and the measurement error. 

Assume that the output results of model kM  obey normal distri-
bution, and their expectations can be a simple linear function of 

the original experimental results k k ka b M+ , the standard devia-

tion is σk. Then, there is g D M N a b Mk k k k k k( ) +( )~ ,σ 2 .Among 

that, ka and kb  are error correction items, which can be obtained 
through a simple linear regression.

The weight calculation of alternative modelII 

 For the weight calculation of alternative model, this paper selects 
expectation maximization (EM) algorithm to accomplish it. The 
advantages of this method are that it is very effective for the pro-
blem of incomplete data, and it is in line with our civil aircraft 
system data collection, especially in the case of the incomplete 
observational data and the direct fault collection. In the calcula-
tion process, introduce a non-observed variable z . If the k th mo-
del is the best prediction in the model collection, set the value of 

ˆ
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z as 1, otherwise 0. At any time, as long as there is a value is 1, 
others are 0. Initializing the weight and variance of each model, 
the algorithm begins to iterate between the expectation step and 
the maximum step. Its expression is:

 z
w g D f

w g D f
k
j k k k

j

l l k
j

l

N=
( )
( )

−

−

=
∑

,

,

σ

σ

1

1

1

 (22)

 where, j  represents the number of iterations. Then, 

g D fk k
j,σ −( )( )1  represents the conditional probability distribu-

tion of the k th model focusing on observing D . g D fk j
k,σ −( )1  

is normal distribution, the mean is kf  and σ k
j−( )1  is the variance. 

In the following maximization step, the BMA weight and variance 

are updated according to the latest ( )j
kz until convergence is re-

ached.

5. Example

Table 1 shows the 35 samples which have repaired and replaced 
engines. There are six parameters have been monitored, which are 
DEGT ( the deviration exhaust gas tempreture), DWF (the devira-
tion of fuel flow ), DOP (the deviation of oil pressure), DHPRS (the 
deviation of high-pressure rotor speed), DLPRV ( the deviation of 
the low-pressure rotor vibration value) and DHPRV (the deviation of 
high-pressure rotor vibration value). The engines’ TSI (Time since 
installation) and FH (Fight hour) from the beginning of the monitor-
ing moment can be obtained. The 36th sample is the engine still in the 
monitoring stage. From the data of table 1, the relationship between 
the various monitoring parameters can be extracted and be used as 
the basis of information fusion. Among that, the PDD (Performance 
degradation degree) is not the data collected directly, but the Gamma 
distribution shape parameter got by Monte-Carlo simulation method, 
according to engine remaining wing life, in the case of a given reli-
ability threshold (90%), and in accordance with that its performance 
degradation meets Gamma random process.

Fuse the information and performance degradation degree accord-
ing to the monitoring information collected and the algorithm pro-
posed in section 2. The vector fused monitoring parameters is:

 β = − −[ . , . , . , . , . , . , . ]0 0103 0 1795 0 0016 0 0318 0 0152 0 0158 0 0156 Tˆ

The estimated values of performance degradation after fusion and 
the actual degradation values are compared in Figure 2.

According to monitoring information and maintenance informa-
tion, the prior value of sudden failures can be determined as
( )3000 0.97E R = ,σ 2

3000
43 76 10R( ) = × −. . E β( )  and σ β2 ( )  can 

be computed by Eq.(19). ĉ  and d̂  can computed by Eq.(17) and 
Eq.(18). The posterior mean and variance of β̂ can be computed by 
Eq. (20) and Eq. (21). Then combining the results of performance 
degradation evaluation, the reliability of sudden failures can be com-
puted by Eq. (8). Figure 3 shows the changing trend of the probability 
density function of sudden failures.

Table 2 gives one engine’s wing time and key monitor-
ing parameters. For the above data, use different models to 
calculate the results of reliability evaluation. The compari-
son of each model is shown in Table 3. 

For the three alternative models, namely, the reliability 
evaluation models of sudden failures, the performance deg-
radation failures and competing failures, use Bayesian mod-
el averaging to calculate the weights of the three models 
respectively for three timing points. The calculation process 
is shown as Eq. (22). Estimate the reliability of aircraft en-
gines, make the results compared with the actual values   to 
calculate the deviation. The results are shown in Table 3.

The following conclusions can be drawn from Table 3. 
First, BMA can really analyze the mechanism of action be-
tween the different failure modes through learning different 
data. The advantages of the model are that it has higher fore-

Table 1. Key performance monitoring parameters for some aircraft engines

no degT dWF doP dhPRS dlPRV dhPRV TSi(Fh) Pdd

1 7.51 2.54 1.89 -7.27 1.06 0.32 4055 0.1192

2 -4.74 3.52 1.92 -5.16 0.52 0.55 7095 0.0459

3 -0.03 2.03 1.19 -8.33 0.57 0.37 7801 0.0378

4 8.04 5.16 1.69 -7.74 0.24 0.57 3331 0.1176

5 7.77 7.80 2.12 -6.81 0.86 0.46 3832 0.1308

        

31 22.69 7.58 2.12 -1.07 0.64 0.99 1055 0.2000

32 4.23 4.83 1.96 -58.92 0.17 0.62 3397 0.0996

33 14.28 5.25 1.63 -2.03 0.78 0.94 1422 0.1572

34 11.38 3.14 1.63 4.19 0.23 0.74 1830 0.1465

35 8.24 3.17 2.18 9.78 1.05 0.76 1954 0.1185

Fig. 2. The difference of performance degradation between real value and 
predictive value (The solid line shows the real value and the dashed 
line shows the predictive value)

Fig. 3. The changing trend of the probability density function of sudden fail-
ures (The solid line shows the firs phase, the dotted line shows the 
second phase and the dashed line shows last phase)
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Third, when aircraft engines are in the phase of 
high reliability, the possibility of sudden failure is 
generally less than the degradation failure. This is 
mainly due to the effects of degradation failure de-
gree on the reliability of degradation failure is great-
er than on the reliability of the sudden failure. As 
the first two monitoring points shown in Table 3, the 
reliability of sudden failures is higher than perform-
ance degradation failures.

Furthermore, when aircraft engines are in the 
operational phase of higher reliability, the probabil-
ity of the occurrence of sudden failure will increase. 
As the third monitoring point, this is a real moment 
that two failure modes play a role at the same time, 
reflecting in the decreased evaluation deviation us-
ing traditional reliability evaluation model of com-
peting failure.

6. Conclusions

In this paper, the mechanism of performance 
degradation and sudden failures of aircraft engines 
has been analyzed, a reliability evaluation model for 
competing failures has been proposed, and the tradi-
tional model of competing failures has been trans-
formed. This method not only can make full use of 
condition monitoring information, but also can ana-

lyze the mechanism and transforming relationship between perform-
ance degradation failures and sudden failures through data learning. 
The method should be studied further.

cast accuracy and it can effectively avoid the reliability overestimate 
or underestimate. From the prediction results of BMA model, because 
the existence of both positive deviation and negative deviation, there 
is no systematic bias from the forecast perspective. Therefore, the re-
sults are more credible.

Second, when aircraft engines are in the phase of higher reliability, 
the factors which lead to failure or affect the reliability are mainly re-
flected in the failure of performance degradation. From the weight cal-
culation results of BMA, the greater stage of high reliability we are in, 
the more proportion of share the performance degradation will occupy. 

Table 2. Key Monitoring parameters and main calculation results for on wing aircraft engines

   item
no 

TSi
(Fh) degT dWF doP dhPRS dlPRV dhPRV β̂ Pdd

1 1707 −2.46 1.23 1.57 −0.12 0.33 0.94 55138 0.0567

2 4740 4.43 3.77 2.30 −2.78 0.52 0.48 46321 0.0832

3 5595 8.24 3.17 2.18 6.53 1.05 0.76 12334 0.1075

Table 3. The comparison of reliability evaluation results using different models

   item

no  

M1 M2 M3 M

ˆ
GR devia-

tion
ˆ
SR devia-

tion
ˆ
CR devia-

tion
Weight

R̂
devia-

tion

1 0.9717 0.12% 0.9749 0.45% 0.9473 -2.39%

0.92

0.9711 0.062%0.05

0.03

2 0.9565 0.59% 0.9580 0.75% 0.9163 -3.64%

0.73

0.9506 -0.074%0.11

0.16

3 0.9512 2.42% 0.9493 2.21% 0.9030 -2.76% 0.28 0.9252 -0.377%
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