PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Taguchi design method to optimize the electrical discharge machining

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The current study utilizes the Taguchi design methodology to optimize the EDM processing parameters for the machining of A6061-T6 aluminum alloy. The experimental trials consider four EDM parameters, namely the pulse current (PC), the pulse-on duration (ON), the duty cycle (DC), and the machining duration (MD). Design/methodology/approach: The machined specimens are observed using the surface roughness is measured using a commercial profilometer. The optimal machining parameters and the relative influence of each parameter on the surface roughness are determined by analyzing the experimental data using the analysis of means (ANOM) and analysis of variance (ANOVA) techniques. Findings: The results show that the magnitude of the surface roughness is determined primarily by the pulse current (PC) and duty cycle (DC) parameters. A CuZn40 brass alloy specimen is machined using the optimal processing parameters and is found to have a lower mean surface roughness than the A6061-T6 workpiece. Research limitations/implications: Practical implications: The general applicability of the optimal machining parameters is investigated by machining a CuZn40 alloy specimen under the optimal conditions and then comparing the surface roughness characteristics of the machined surface with those of the A6061-T6 specimen. Originality/value: It is inferred that the optimal machining parameters established using the Taguchi design methodology have a good general applicability to the EDM machining of both aluminum and brass alloys.
Rocznik
Strony
76--82
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Department of Industrial Education and Technology, National Changhua University of Education, Changhua 500, Taiwan
autor
  • Department of Industrial Education and Technology, National Changhua University of Education, Changhua 500, Taiwan
autor
  • Department of Industrial Education and Technology, National Changhua University of Education, Changhua 500, Taiwan
Bibliografia
  • [1] Y.F. Tzeng, F.C. Chen, A simple approach for robust design of high-speed electrical-discharge machining technology, International Journal of Machine Tools and Manufacture 43 (2003) 217-227.
  • [2] C.H. Che Haron, B.Md. Deros, A. Ginting, M. Fauziah, Investigation on the influence of machining parameters when machining tool steel using EDM, Journal of Materials Processing Technology 116 (2001) 84-87.
  • [3] J. Simao, H.G. Lee, D.K. Aspinwall, R.C. Dewes, E.M. Aspinwall, Workpiece surface modification using electrical discharge machining, International Journal of Machine Tools and Manufacture 43 (2003) 121-128.
  • [4] F. Ghanem, C. Braham, H. Sidhom, Influence of steel type on electrical discharge machined surface integrity, Journal of Materials Processing Technology 142 (2003) 163-173.
  • [5] Y.C. Lin, B.H. Yan, F.Y. Huang, Surface improvement using a combination of electrical discharge machining with ball burnish machining based on the Taguchi method, International Journal of Advanced Manufacturing Technology 18 (2001) 673-682.
  • [6] J.C. Su, J.Y. Kao, Y.S. Tarng, Optimisation of the electrical discharge machining process using a GA-based neural network, International Journal of Advanced Manufacturing Technology 24 (2004) 81-90.
  • [7] S. Das, M. Klotz, F. Klocke, EDM simulation: finite element-based calculation of deformation, microstructure and residual stresses, Journal of Materials Processing Technology 142 (2003) 434-451.
  • [8] H.T. Lee, T.Y. Tai, Relationship between EDM parameters and surface crack formation, Journal of Materials Processing Technology 142 (2003) 676-683.
  • [9] H-P. Schulze, R. Herms, H. Juhr, W. Schaetzing, G. Wollenberg, Comparison of measured and simulated crater morphology for EDM, Journal of Materials Processing Technology 149 (2004) 316-322.
  • [10] P. Putyra, J. Laszkiewicz-Lukasik, P. Wyzga, M. Podsiadlo, B. Smuk, The selection of phase composition of silicon nitride ceramics for shaping, Journal of Achievements in Materials and Manufacturing Engineering 48/1 (2011) 35-40.
  • [11] D. Kuc, J. Cebulski, Plastic behaviour and microstructure characterization high manganese aluminium alloyed steel for the automotive industry, Journal of Achievements in Materials and Manufacturing Engineering 51/1 (2012) 14-21.
  • [12] J. Szajnar, T. Wróbel, Methods of inoculation of pure aluminium structure, Journal of Achievements in Materials and Manufacturing Engineering 27/1 (2008) 95-98.
  • [13] J.-K. Kim, H,-S. Lim, J.-H. Cho, C.-H. Kim, Bead-on-plate weldability of Al 5052 alloy using a disk laser, Journal of Achievements in Materials and Manufacturing Engineering 28/2 (2008) 187-190.
  • [14] Y. Jiang. W. Zhao, X. Xi, A study on pulse control for small-hole electrical discharge machining, Journal of Materials Processing Technology 212 (2012) 1463-1471.
  • [15] E. Weingartner, K. Wegener, F. Kuster, Wire electrical discharge machining applied to high-speed rotating workpieces, Journal of Materials Processing Technology 212 (2012) 1298-1304.
  • [16] D. Kanagarajan, K. Palanikumar, R. Karthikeyan, Effect of electrical discharge machining on strength and reliability of WC-30%Co composite, Materials and Design 39 (2012) 469-474.
  • [17] P.J. Ross, Taguchi techniques for quality engineering, McGraw-Hill, Singapore, 1996.
  • [18] W.J. William, C.M. Creveling, Engineering methods for robust product design, Addison-Wesley, Boston, 1998.
  • [19] N. Belavendram, Quality by design, Prentice-Hall, New York, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfa4b1d9-7344-465b-858b-c63b72c430a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.