PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling and Experimental Testing of Hybrid Joints Made of: Aluminium Adherends, Adhesive Layers and Rivets for Aerospace Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The contemporary demands in different branches of engineering require application of new multi-component materials and structural systems. Appropriately chosen joining technology can offer significant enhancement of structural system performance in terms of effectiveness, reliability, safety and other design criteria. The modern applications of complex joints are of great technological interest as they permit to combine and to enhance the individual effects of each kind of joint. This is of great importance for modern applications in different branches of engineering: aerospace, mechanical and civil. Therefore in this paper we will focus on the analysis of mechanical response of adhesive joint of aluminium strips reinforced by rivets. The aim of the paper is to investigate experimentally the mechanical behaviour of adhesive joint of aluminium strips reinforced by rivets for industrial applications in aerospace. The considered joint was subjected to uniaxial loading. The tests in this paper were performed for: • classical adhesive joint in order to investigate material parameters for numerical modelling of the hybrid joint • hybrid joining of the structural elements in order to investigate the reinforcement effect. The experiments with application of digital image ARAMIS system allowed for on-line monitoring of the deformation process of the considered joining elements. The particular distributions of displacement fields at the joint surface were estimated for any stage of loading process. Numerical modelling was performed for experimentally investigated specimens. The materials parameters, necessary for calculation, were estimated from experiments. FEA modelling was done with the help of ABAQUS code.
Słowa kluczowe
Twórcy
autor
  • Lublin University of Technology, 20-618 Lublin, 40 Nadbystrzycka Str., Poland
autor
  • Lublin University of Technology, 20-618 Lublin, 40 Nadbystrzycka Str., Poland
Bibliografia
  • [1] V. Birman, L. V. Bryd, Modelling and Analysis of Functionally Graded Materials and Structures, Appl. Mech. Rev. 60, 195-216 (2007).
  • [2] L .A. Gömze, L. N. Gömze, Alumina-based hetero-modulus ceramic composites with extreme dynamic strength–phase transformation of Si3N4 during high speed collision with metallic bodies, Ĕpitöanyag – Journal of Silicate Based and Composite Materials 61, 38-42 (2009).
  • [3] L. A. Gömze, L. N. Gömze, Ceramic-based lightweight composites with extreme dynamic strength – IOP Conf. Ser., Mater. Sci. Eng. 47 012033 http://dx.doi.org/10.1088/1757-899X/47/1/012033.
  • [4] T. Sadowski, A. Neubrand, Estimation of the crack length after thermal shock in FGM strip, Int. J. Fract. 127, 135-140 (2004).
  • [5] M. Birsan, H. Altenbach., T. Sadowski, V. Eremeyev, D. Pietras, Deformation analysis of functionally graded beams by the direct approach”, Composites: Part B 43, 1315-1328 (2012)
  • [6] I. Ivanov, T. Sadowski, D. Pietras, Crack propagation In functionally graded strip”, European Physical Journal Special Topics 222, 1587-1595 (2013).
  • [7] V. Petrova, T. Sadowski, Theoretical modeling and analysis of thermal fracture of semi-infinite functionally graded materials with edge cracks, Meccanica 49, 2603-2615 (2014).
  • [8] J. Gajewski, T. Sadowski, Sensitivity analysis of crack propagation in pavement bituminous layered structures using a hybrid system integrating Artificial Neural Networks and Finite Element Method, Comput. Mat. Sci. 82, 114-117 (2014).
  • [9] T. Sadowski, S. Hardy, E. Postek, Prediction of the mechanical response of polycrystalline ceramics containing metallic inter-granular layers under uniaxial tension, Comput. Mat. Sci. 34, 46-63 (2005).
  • [10] T. Sadowski, S. Hardy, E. Postek, A new model for the time-dependent behaviour of polycrystalline ceramic materials with metallic inter-granular layers under tension, Mat. Sci. Eng. A 424, 230-238 (2006).
  • [11] T. Sadowski, E. Postek, Ch. Denis, Stress distribution due to discontinuities in polycrystalline ceramics containing metallic inter-granular layers, Comput. Mat. Sci. 39, 230-236 (2007).
  • [12] H. Dębski, T. Sadowski, Modelling of microcracks initation and evolution along interfaces of the WC/Co composite by the finite element method, Comput. Mat. Sci. 83, 403-411 (2014).
  • [13] J. Bieniaś, H. Dębski, B. Surowska, T. Sadowski, Analysis of microstructure damage in carbon/epoxy composites using FEM, Comput. Mat. Sci. 64, 168-172 (2012).
  • [14] T. Sadowski, P. Golewski, The influence of quantity and distribution of cooling channels of turbine elements on level of stresses in the protective layer TBC and the efficiency of cooling, Comp. Mater. Sci. 52, 293-297 (2012).
  • [15] T. Sadowski, P. Golewski, Detection and numerical analysis of the most efforted places in turbine blades under real working conditions, Comp. Mater. Sci. 64, 285-288 (2012).
  • [16] N. L. Savchenko, I. N. Sevostyanova, T. Sablina, L. Molnar, R. Geber, L. A. Gömze, S. N. Kulkov, L. N. Gömze, The influence of porosity on the elasticity and strength of alumina ceramics, Ĕpitöanyag – Journal of Silicate Based and Composite Materials 66, 44-34 (2014).
  • [17] A. V. Pocius, Adhesion and adhesives technology, Hasner, New York (1997).
  • [18] R. D. Adams, J. Comyn, W. C. Wake, Structural adhesive joints in engineering. 2nd ed. Chapman&Hall, London (1997).
  • [19] L. F. M. da Silva, A. Öchsner (Eds), Modelling of adhesively bonded joints, Springer (2008).
  • [20] L. F. M. da Silva, P. J. C. das Neves, R. D. Adams, J. K. Spelt, Analytical models of adhesively bonded joints – Part I: Literature survey, Int. J. Adhes. & Adhes. 29, 319-330, (2009).
  • [21] L. F. M. da Silva, P. J. C. das Neves, R. D. Adams, J. K. Spelt, Analytical models of adhesively bonded joints – Part II: Comparative study, Int. J. Adhes. & Adhes. 29, 331-341, (2009).
  • [22] L. F. M. da Silva, A. Öchsner, R. D. Adams, Handbook of Adhesion Technology, Springer (2011).
  • [23] L. F. M. da Silva, A. Öchsner, A.Pirondi (Eds), Hybrid adhesive joints, Springer (2011).
  • [24] T. Sadowski, P. Golewski, E. Zarzeka-Raczkowska, Damage and failure processes of hybrid joints: adhesive bonded aluminium plates reinforced by rivets, Comp. Mater. Sci. 50, 1256-1262 (2011).
  • [25] S. M. H. Darwish, Science of weld-adhesive joints, in da Silva, L. F. M. Pirondi, A. Öchsner A. (Eds), Hybrid adhesive joints, (Springer, 2011) p. 1-36.
  • [26] T. Sadowski, P. Golewski, M. Kneć, Experimental investigation and numerical modelling of spot welding–adhesive joints response, Composite Structures 112, 66-77 (2014).
  • [27] T. Sadowski, M. Kneć, P. Golewski, Spot welding-adhesive joints: modeling and testing, Journal of Adhesion 90, 346-364 (2014).
  • [28] J. Gajewski, P. Golewski, T. Sadowski, Geometry optimization of a thin-walled element for an air structure using hybrid system integrating artificial neural network and finite element method, Comp. Struct. 159, 589-599 (2017).
  • [29] A. Pirondi, F. Moroni, Science of Clinch–Adhesive Joints, in Hybrid adhesive joints. Advanced Structured Materials 6, Springer 2011, L. F. M. da Silva, A. Pirondi, A. Öschner (Eds), pp. 109-147.
  • [30] F. Moroni, A. Pirondi, F. Kleiner, Experimental analysis and comparison of the strength of simple and hybrid structural joints, Int. J. Adh&Adhes 30, 367-379 (2010).
  • [31] T. Balawender, T. Sadowski, Experimental and numerical analyses of clinched and adhesively bonded hybrid joints, J. Adhes. Sci. Technol. 25, 2391-2407 (2011).
  • [32] T. Sadowski, P. Golewski, Numerical study of the prestressed connectors and their distribution on the strength of a single lap, a double lap and hybrid joints subjected to uniaxial tensile test, Archives of Metallurgy and Materials 58, 581-587 (2013).
  • [33] A. Needleman, A continuum model for void nucleation by inclusion debonding, J. Appl. Mech. 54, 525-531, (1987).
  • [34] V. Tvergaard, J. Hutchinson, The relation between crack growth resistance and fracture process parameters in elastic-plastic solids, J. Mech. Phys. Solids 40, 1377-1397 (1992).
  • [35] L. Marsavina, T. Sadowski, Fracture parameters at bi-material ceramic interfaces under bi-axial state of stress, Comp. Mater. Sci, 45, 693-697 (2009).
  • [36] L. Marsavina, T. Sadowski, Kinked cracks at a bi-material ceramic interface – numerical determination of fracture parameters, Comput. Mat. Sci. 44, 941-950 (2009).
  • [37] V. Burlayenko, T. Sadowski, A numerical study of the Nonlinear dynamic analysis of harmonically excited debonded sandwich plates using finite element modeling, Composite Structures 108, 354-366 (2014).
  • [38] V. Burlayenko, T. Sadowski, A numerical study of the dynamic response of sandwich plates initially damaged by low-velocity impact, Comput. Mat. Sci. 52, 212-216 (2009).
  • [39] V. Burlayenko, T. Sadowski, A numerical study of the dynamic response of sandwich plates initially damaged by low-velocity impact, Comput. Mat. Sci. 52, 212-216 (2012).
  • [40] L. Marsavina, T. Sadowski, Stress intensity factors for an interface kinked crack in a bi-material plate loaded normal to the interface, Int. J. Frac. 145, 237-243 (2007).
  • [41] T. Sadowski, L. Marsavina, Multiscale modelling of two-phase ceramic matrix composites, Comput. Mat. Sci. 50, 1336-1346 (2011).
  • [42] T. Sadowski, B. Pankowski, Numerical modelling of two-phase ceramic composite response under uniaxial loading, Composite Structures 143, 388-394 (2016).
  • [43] T. Sadowski, S. Samborski, Modelling of porous ceramics response to compressive loading, J. Am. Cer. Soc. 86, 2218-2221(2003).
  • [44] T. Sadowski, S. Samborski, Development of damage state in porous ceramics under compression, Comp. Mater. Sci. 43, 75-81 (2008).
  • [45] T. Sadowski, G. Golewski, Effect of aggregate kind and graining on modeling of plain concrete under compression, Comput. Mat. Sci. 43, 119-126 (2018).
  • [46] E. Postek, T. Sadowski, Assesing the influence of porosity in the deformation of metal-ceramic composites, Comp. Interfaces 18, 57-76 (2011).
  • [47] L. Marsavina, E. Linul, V. Tudor, T. Sadowski, A comparison between dynamic and static fracture toughness of polyurethane foams, Polymer Testing 32, 673-680 (2013).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bfa2f1d9-11b4-4a02-97eb-2a07a157e2ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.