Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The γ/γ′ Co-based alloys are a new class of cobalt superalloys, which are characterized by remarkable high temperature strength owing to strengthening by γ′-Co3(Al, X) phases. In this investigation, the effect of cerium addition on oxidation behavior of model Co-Al-W alloys was studied. The introduction of Ce aimed at improvement of the oxidation resistance of γ′-forming Co-based superalloys. The minor additions of cerium (0.1, 0.5 at.%) were added to the base alloy Co-9Al-9W. The alloys were prepared via induction vacuum melting (VIM). Further, a primary microstructure of the alloys was analyzed with particular regard to a segregation of Ce. The thermogravimetric analysis (TG) under non-isothermal conditions was used to preliminary estimate the oxidation behavior of alloys at different temperatures. During experiment, differential thermal analysis (DTA) was performed simultaneously. After this test, cyclic oxidation expermients was carried out at 800°C for 500 h. In as-cast state, Ce segregates to interdendritic areas and forms intermetallic phases. The effect connected with melting of interdendritic precipitates was observed at 1160°C. Ce-containing alloys were less prone of oxide spallation. Moreover, oxidation rate of these alloys substantially decreased after 100h of oxidation, whereas mass of the sample corresponding to base alloy continued to increase.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
203--208
Opis fizyczny
Bibliogr. 32 poz., fot., rys.
Twórcy
autor
- Silesian University of Technology, Faculty of Materials Engineering, Department of Materials Technologies, Katowice, Poland
autor
- University of Zilina, Faculty of Mechanical Engineering, Department of Material Engineering, Zilina, Slovak Republic
autor
- Silesian University of Technology, Faculty of Materials Engineering, Department of Materials Technologies, Katowice, Poland
Bibliografia
- [1] Y. Wu, C. Li, X. Xia, H. Liang, Q. Qi, Y. Liu, J. Mater. Sci. Technol. 67, 95-104 (2021)
- [2] J. Sato T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, Science 312, 90-91 (2006).
- [3] T. Omori, K. Oikawa, J. Satao, I. Ohnuma, U.R. Kattner, R. Kainuma, K. Ishida, Intermetallics 32, 274-283 (2013).
- [4] F. Pyczak, A. Bauer, M. Göken, U. Lorenz, S. Neumeier, M. Oehring, J. Paul, N. Schell, A. Schreyer, A. Stark, F. Symanzik, J. Alloys Compd. 632, 110-115 (2015).
- [5] M. Weiser, S. Virtanen, Oxid. Met. 92, 541-560 (2019).
- [6] H.-Y. Yan, V.A. Vorontsov, D. Dye, Intermetallics 49, 44-53 (2014).
- [7] K. Shinagawa, T. Omori, K. Oikawa, R. Kainuma, K. Ishida, Scr. Mater. 61, 612-615 (2009).
- [8] P.J. Bocchini, C.K. Sudbrack, R.D. Noebe, D.C. Dunand, D.N. Seidman, Mater. Sci. Eng. A, 682, 260-269 (2017).
- [9] M. Kolb, L.P. Freund, L. Fischer, I. Povstugar, S.K. Makineni, B. Gault, D. Raabe, J. Müller, E. Spiecker, S. Neumeier, M Göken, Acta Mater. 145, 247-254 (2018).
- [10] A. Suzuki, T.M. Pollock, Acta Mater. 56, 1288-1297 (2008).
- [11] G. Feng, H. Li, S.S. Li, J B. Sha, Scr. Mater. 67, 499-502 (2012).
- [12] L. Shi, J.J. Yu, C Y. Cui, X.F. Sun, Materials Letters 149, 58-61 (2015).
- [13] L. Klein, A. Bauer, S. Neumeier, M. Göken, S. Virtanen, Corr. Sci. 53, 2027-2034 (2011).
- [14] L. Klein, Y. Shen, M.S. Killian, S. Virtanen, Corr. Sci. 53, 2713-2720 (2011).
- [15] F. Zhong, F. Fan, S. Li, J. Sha, Progress in Natural Science, 26, 600-612 (2016).
- [16] Z. Tao, F. Zhong, Y. Yu, J. Sha, Progress 29, 416-424 (2019).
- [17] F. Zhong, Z-L. Tao, J-B. Sha, Rare Met. (2020).
- [18] Q. Wang, Q. Yao, J.-Z. Song, Y. Wang, Y.-H. Zhu, T. Lu, B.-J. Han, J. Mater. Res. 32, 2117-2126 (2017).
- [19] G.M. Ecer, G.H. Meier, The effect of cerium on the oxidation of Ni-50Cr alloys, Oxid. Met. 13, 159-180 (1979).
- [20] X.L. Pan, H.Y. Yu, G.F. Tu, W.R. Sun, Z.Q. Hu, Effect of rare earth metals on solidification behaviour in nickel based superalloy, Mater. Sci. Technol. 28, 560-564 (2011).
- [21] S. Mingzeng, C. Lishan, Z. Yanjun, X. Linlin, J. Rare Earths 30, 164-169 (2012).
- [22] Y. Qingrong, Z. Huaiying, T. Chengying, P. Shunkang, J. Rare Earths 29, 650-653 (2011).
- [23] N. Nasri, J. Gastebois, M. Pasturel, B. Belgacem, I. Péron, F. Gouttefangeas, B. Hassen, O. Tougait, H. Noël, J. Alloys Compd. 628, 277-281 (2015).
- [24] T. Mikuszewski, A. Tomaszewska, G. Moskal, D. Migas, D. Niemiec, Inż. Mat. 5, 217-223 (2017).
- [25] S.J. Hu, X.Z. Wei, D.C. Zeng, X.C. Kou, Z.Y. Liu, E. Bruck, J.C.P. Klaase, F.R. de Boer, K.H.J. Buschow, J. Alloys Compd. 283, 83-87 (1999).
- [26] K. Kobayashi, R. Kainuma, K. Fukamichi, K. Ishida, J. Alloys Compd. 164 (2005)
- [27] T. Maciąg, K. Rzyman, R. Przeliorz, Arch. Metall. Mater. 60, 1871-1876 (2015).
- [28] X. Su, W. Zhang, Z. Du, J. Alloys Compd. 267, 121-127 (1998).
- [29] S.A. Uporov, V.A. Bykov, D. Yagodin, J. Alloys Compd. 589, 421 (2014).
- [30] V. Sidorov, P. Svec, D. Janickovic, V. Mikhailova, L. Sonac, J. Magn. Magn. Mater. 395, 326 (2015).
- [31] B.G. Shen, J.Y. Wang, H.W. Zhang, S.Y. Zhang, Z.H. Cheng, B. Liang, W.S. Zhan, J. Appl. Phys. 85, 4666 (1999).
- [32] H. Okamoto, J. Phase Equilibria Diffus. 17, 367 (1996)
Uwagi
1. This work is financed from the budgetary funds for science for the years 2018-2022, as a research project within the Diamond Grant programme (0069/DIA/2018/47). The authors wish to acknowledge support from The International Visegrad Fund. The research was carried out as part of the Visegrad Scholarship Program, scholarship no. 52010400.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf9ecbf5-7944-4d36-a0c7-8afd48b29389