Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We have developed a maintenance decision-making approach based on dynamic opportunistic window (OW), utilizing algorithms such as k-mean clustering, expected maximum and parameter estimation to address the lack of a reasonable basis for the duration and divided number of OWs in current maintenance decision-making. Firstly, we have comprehensively summarized the multi-stage opportunistic maintenance (OM) decision-making approach, with a particular focus on its current strengths and limitations. Secondly, the modeling concept of the dynamic OW is analyzed, and the underlying assumptions are established. Furthermore, it elaborates on the theoretical foundation of the maintenance decision-making approach based on the dynamic OW through a detailed modeling process. Finally, we validate the proposed model by conducting experiments on tandem components from the main combustion chamber in an aero-engine. The experimental results demonstrate the significant value of the proposed maintenance decision-making approach based on dynamic OW in enhancing equipment reliability and optimizing maintenance support resources.
Czasopismo
Rocznik
Tom
Strony
art. no. 191515
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
- Air force Engineering University, China
autor
- Air force Engineering University, China
autor
- Air force Engineering University, China
autor
- Baoji Titanium Industry Co., Ltd, China
autor
- Air force Engineering University, China
Bibliografia
- 1. Su, Chun, and Lin Wu. "Opportunistic maintenance optimisation for offshore wind farm with considering random wind speed." International Journal of Production Research, vol. 62, 2024, pp. 1862-1878, https://doi.org/10.1080/00207543.2023.2202280.
- 2. Dinh, Duc, et al. "Reliability Modeling and Opportunistic Maintenance Optimization for a Multicomponent System with Structural Dependence." Reliability Engineering & System Safety, vol. 241, 2023, pp. 109708, https://doi.org/10.1016/j.ress.2023.109708.
- 3. Zhao, Baorong, et al. "Research on opportunistic maintenance strategy of series system considering fault correlation and component importance." QR2MSE 2022, 2022,pp. 642-647, https://10.1049/icp.2022.2937.
- 4. Shi, Haohao, et al. "Opportunistic maintenance policies for multi-machine production systems with quality and availability improvement." Reliability Engineering & System Safety, vol. 234, 2023, pp. 109183, https://doi.org/10.1016/j.ress.2023.109183.
- 5. Xiao, Lei, et al. "Joint Optimization of Opportunistic Maintenance and Production Scheduling considering Batch Production Mode and Varying Operational Conditions." Reliability Engineering & System Safety, vol. 202, 2020, pp. 107047, https://doi.org/10.1016/j.ress.2020.107047.
- 6. Meng, D, et al. (2022). "Fault analysis of wind power rolling bearing based on EMD feature extraction. " CMES, vol 130, 2022, pp. 543-558, https://doi.org/10.32604/cmes.2022.018123.
- 7. Rasay, H, et al. "Opportunistic maintenance integrated model for a two-stage manufacturing process. " Int J Adv Manuf Technol, vol. 119, 2022, pp. 8173–8191, https://doi.org/10.1007/s00170-021-08571-5.
- 8. Ma, Hui, et al. "Residual useful life prediction of the vehicle isolator based on Bayesian inference." Structures. vol. 58, 2023, pp. 105518, https://doi.org/10.1016/j.istruc.2023.105518.
- 9. Meng, Debiao, et al. "Kriging-assisted hybrid reliability design and optimization of offshore wind turbine support structure based on a portfolio allocation strategy." Ocean Engineering, vol. 295, 2024, pp. 116842.
- 10. Yang, Shiyuan, et al. "A novel learning function for adaptive surrogate-model-based reliability evaluation." Philosophical Transactions of the Royal Society A, vol. 382, 2024, pp. 20220395, http://doi.org/10.1098/rsta.2022.0395.
- 11. J. Huang, et al. "A Real-Time Maintenance Policy for Multi-Stage Manufacturing Systems Considering Imperfect Maintenance Effects." IEEE Access, vol. 6, 2018, pp. 62174-62183, https://doi.org/10.1109/ACCESS.2018.2876024.
- 12. Yang, Xiuzhen, et al. "Mission Reliability-centered Opportunistic Maintenance Approach for Multistate Manufacturing Systems." Reliability Engineering & System Safety, vol. 241, 2023, pp. 109693, https://doi.org/10.1016/j.ress.2023.109693.
- 13. Xia, Tangbin, et al. "Dynamic Maintenance Decision-making for Series–Parallel Manufacturing System Based on MAM–MTW Methodology." European Journal of Operational Research, vol. 221, 2012, pp. 231-240, https://doi.org/10.1016/j.ejor.2012.03.027.
- 14. Liu, Gehui, et al. "Optimum Opportunistic Maintenance Schedule Incorporating Delay Time Theory with Imperfect Maintenance." Reliability Engineering & System Safety, vol. 213, 2021, p. 107668, https://doi.org/10.1016/j.ress.2021.107668.
- 15. Zhang, Baoshan, et al. "A fault prediction model of adaptive fuzzy neural network for optimal membership function." IEEE Access, vol. 8, 2020, pp. 101061-101067, https://doi.org/10.1109/ACCESS.2020.2997368.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf9ce81a-0d2e-41fc-bebe-0367aa5fddab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.