PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distribution of metals and extent of contamination in sediments from the south-eastern Baltic Sea (Lithuanian zone)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The distribution of metals (Pb, Cu, Cd, Ni, Cr, Zn) in surface sediments and the potential pollution sources in the south-eastern part (SE) of the Baltic Sea (Lithuanian zone) were investigated in relation to the environmental characteristics (amount of fine-grained particles, TOC content in sediments, origin of sedimentary organic matter, salinity, water depth) in 2011-2014. The higher metal concentrations were measured in sediments of the Curonian Lagoon and in the open waters. An approach using various environmental indices (enrichment factor EF, geoaccumulation index Igeo and contamination factor CF) was used to quantitatively assess a contamination degree. The principal component analysis (PCA) was applied in order to further scrutinize pollution from metal sources. The values of the contamination indices showed no/very low sediment contamination with Ni and Cr, minor-moderate contamination with Cu, Zn and Pb and moderate-considerable pollution with Cd. The strong relationships among metals suggested their similar distribution pattern and a combination of natural and anthropogenic sources. The higher metal concentrations coincided with an increasing amount of fine-grained fraction and organic carbon. In the territorial waters, the distribution of elements was related to the water depth. In addition, the binding of metals with insoluble iron sulphides might explain their high concentrations at the most remote and deepest stations.
Czasopismo
Rocznik
Strony
193--206
Opis fizyczny
Bibliogr. 44 poz., mapy, tab.
Twórcy
  • Environmental Protection Agency, Department of Marine Research, Klaipėda, Lithuania
  • State Research Institute Center for Physical Sciences and Technology, Vilnius, Lithuania
  • Environmental Protection Agency, Department of Marine Research, Klaipėda, Lithuania
  • Klaipėda University, Klaipėda, Lithuania
  • State Research Institute Center for Physical Sciences and Technology, Vilnius, Lithuania
autor
  • Nature Research Center, Institute of Geology and Geography, Vilnius, Lithuania
  • Vilnius University, Vilnius, Lithuania
  • Environmental Protection Agency, Department of Marine Research, Klaipėda, Lithuania
  • Klaipėda University, Klaipėda, Lithuania
autor
  • Environmental Protection Agency, Department of Marine Research, Klaipėda, Lithuania
  • State Research Institute Center for Physical Sciences and Technology, Vilnius, Lithuania
  • State Research Institute Center for Physical Sciences and Technology, Vilnius, Lithuania
Bibliografia
  • [1] Abreu, I. M., Cordeiro, R. C., Soares-Gomes, A., Abessa, D. M. S., Maranho, L. A., Santelli, R. E., 2016. Ecological risk evaluation of sediment metals in a tropical Euthrophic Bay, Guanabara Bay, Southeast Atlantic. Mar. Pollut. Bull. 109 (1), 435-445, http://dx.doi.org/10.1016/j.marpolbul.2016.05.030.
  • [2] Aigars, J., Poikāne, R., Jurgensone, I., Jansons, M., 2014. Impact of eutropication and climate change on Cd and other trace metal dynamic in the Gulf of Riga, Baltic Sea. Proc. Latvian Acad. Sci. Sect. B 68 (1-2), 112-117, http://dx.doi.org/10.2478/prolas-2014-0010.
  • [3] Birch, G. F., 2017. Determination of sediment metal background concentrations and enrichment in marine environments — a critical review. Sci. Total. Environ. 580, 813-831, http://dx.doi.org/10.1016/j.scitotenv.2016.12.028.
  • [4] Bitinas, A., Žaromskis, R., Gulbinskas, S., Damušytė, A., Žilinskas, G., Jarmalavičius, D., 2005. The results of integrated investigations of the Lithuanian coast of the Baltic Sea: geology, geomorphology, dynamics and human impact. Geol. Q. 49 (4), 355-362.
  • [5] Bonnail, E., Sarmiento, A. M., Del Valls, T. A., Nieto, J. M., Riba, I., 2016. Assessment of metal contamination, bioavailability, toxicity and bioaccumulation in extreme metallic environments (Iberian Pyrite Belt) using Corbicula fluminea. Sci. Total. Environ. 544, 1031-1044, http://dx.doi.org/10.1016/j.scito-tenv.2015.11.131.
  • [6] Costa, E. S., Grilo, C. F., Wolff, G. A., Thompson, A., Figueira, R. C. L., Neto, R. R., 2015. Evaluation of metals and hydrocarbons in sediments from a tropical tidal flat estuary of Southern Brazil. Mar. Pollut. Bull. 92 (1-2), 259-268, http://dx.doi.org/10.1016/j.marpolbul.2014.11.028.
  • [7] Dang, D. H., Lenoble, V., Durrieu, G., Omanović, D., Mullot, J.-U., Mounier, S., Garnier, C., 2015. Seasonal variations of coastal sedimentary trace metals cycling: insight on the effect of manganese and iron (oxy)hydroxides, sulphide and organic matter. Mar. Pollut. Bull. 92 (1-2), 113-124, http://dx.doi.org/10.1016/j.marpolbul.2014.12.048.
  • [8] Ebbing, J., Zachowicz, J., Uścinowicz, S., Laban, C., 2002. Normalisation as a tool for environmental impact studies: the Gulf of Gdańsk as a case study. Baltica 15, 59-62.
  • [9] Emelyanov, E. M., 2001. Biogenic components and elements in sediments of the Central Baltic and their redistribution. Mar. Geol. 172, 23-41.
  • [10] Emelyanov, E. M., 2014. Biogenic components of the Baltic Sea sediments. Russ. Geol. Geophys. 55 (12), 1404-1417, http://dx.doi.org/10.1016/j.rgg.2014.11.005.
  • [11] Emelyanov, E. M., Gulbinskas, S., Suzdalev, S., 2015. Biogenic components and trace elements in the sediments of river mouths and accumulation areas of the Curonian Lagoon (south-eastern Baltic Sea). Baltica 28 (2), 151-162.
  • [12] Filipkowska, A., Kowalewska, G., Pavoni, B., 2014. Organotin compounds in surface sediments of the Southern Baltic coastal zone: a study on the main factors for their accumulationand degradation. Environ. Sci. Pollut. Res. Int. 21 (3), 2077-2087, http://dx.doi.org/10.1007/s11356-013-2115-x.
  • [13] Galkus, A., Jokšas, K., Stakėnienė, R., Lagunavičienė, L., 2012. Heavy metal contamination of harbour bottom sediments. Pol. J. Environ. Stud. 21 (6), 1583-1594.
  • [14] García, E. M., Cruz-Motta, J. J., Farina, O., Bastidas, C., 2008. Anthropogenic influences on heavy metals across marine habitats in the western coast of Venezuela. Cont. Shelf. Res. 28 (20), 2757-2766, http://dx.doi.org/10.1016/j.csr.2008.09.020.
  • [15] Håkanson, L., 1980. Ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 14, 975-1001.
  • [16] HELCOM, 2010. Hazardous substances in the Baltic Sea — An integrated thematic assessment of hazardous substances in the Baltic Sea. Balt. Sea Environ. Proc. No. 120B.
  • [17] Ho, H. H., Swennen, R., Cappuyns, V., Vassilieva, E., Van Tran, T., 2012. Necessity of normalization to aluminum to assess the contamination by heavy metals and arsenic in sediments near Haiphong Harbor, Vietnam. J. Asian Earth Sci. 56, 29-239, http://dx.doi.org/10.1016/j.jseaes.2012.05.015.
  • [18] Jakimska, A., Konieczka, P., Skóra, K., Namieśnik, J., 2011. Bioaccumulation of metals in tissues of marine animals, Part I: the role and impact of heavy metals on organisms. Pol. J. Environ. Stud. 20 (5), 1117-1125.
  • [19] Karbassi, A. R., Bassam, S., Ardestani, M., 2013. Flocculation of Cu, Mn, Ni, Pb, and Zn during estuarine mixing (Caspian Sea). Int. J. Environ. Res. 7 (4), 917-924.
  • [20] Levei, E., Ponta, M., Senila, M., Miclean, M., Frentiu, T., 2014. Assessment of contamination and origin of metals in mining affected river sediments: a case study of the Aries River catchment, Romania. J. Serb. Chem. Soc. 79 (8), 1019-1036, http://dx.doi.org/10.2298/JSC130501086L.
  • [21] Leivuori, M., Jokšas, K., Seisuma, Z., Kulikova, I., Petersell, V., Larsen, B., Petersen, B., Floderus, S., 2000. Distribution of heavy metals in sediemnts of the Gulf of Riga, Baltic Sea. Boreal. Environ. Res. 5, 165-185.
  • [22] Lin, Q., Liu, E., Zhang, E., Li, K., Shen, J., 2016. Spatial distribution, contamination and ecological risk assessment of heavy metals in surface sediments of Erhai Lake, a large eutrophic plateau lake in southwest China. Catena 145, 193-203, http://dx.doi.org/10.1016/j.catena.2016.06.003.
  • [23] Loring, D. H., Rantala, R. T., 1992. Manual for the geochemical analysis of marine sediments and suspended particulate matter. Earth-Sci. Rev. 32, 235-283.
  • [24] Mažeika, J., Dušauskienė-Duž, R., Radzevičius, R., 2004. Sedimentation in the eastern Baltic Sea: lead-210 dating and trace element data implication. Baltica 17 (2), 79-92.
  • [25] Müller, G., 1979. Schwermetalle in den sedimenten des Rheinsveranderungen seitt 1971. Umschau 778-783.
  • [26] Müller, A., 1999. Distribution of heavy metals in recent sediments in the Archipelago Sea of southwestern Finland. Boreal Environ. Res. 4, 319-330.
  • [27] Palanques, A., Diaz, J. I., Farran, M., 1995. Contamination of heavy metals in the suspended and surface sediment of the Gulf of Cadiz (Spain): the role of sources, currents, pathways and sinks. Oceanol. Acta 18 (4), 469-477.
  • [28] Pustelnikovas, O., Dembska, G., Szefer, P., Radke, B., Bolałek, J., 2007. Distribution of migration (state) forms of microelements in the sediments of the ports of Klaipėda and Gdańsk. Oceanol. Hydrobiol. St. 36 (4), 129-149, http://dx.doi.org/10.2478/v10009-007-0032-3.
  • [29] Pustelnikovas, O., 2008. On the Eastern Baltic environment changes: a case study of the Curonian Lagoon area. Geologija 50 (2), 80-87.
  • [30] Prego, R., Belzunce Segarra, M. J., Helios-Rybicka, E., Barciela, M. C., 1999. Cadmium, manganese, nickel and lead contents in Surface sediments of the lower Ulla River and its estuary (northwest Spain). Bol. Inst. Esp. Oceanogr. 15 (1-4), 495-500.
  • [31] Renner, R. M., Glasby, G. P., Szefer, P., 1998. Endmember analysis of heavy-metal pollution in surficial sediments from the Gulf of Gdańsk and the southern Baltic Sea off Poland. Appl. Geochem. 13, 313-318.
  • [32] Remeikaitė-Nikienė, N., Lujanienė, G., Garnaga, G., Jokšas, K., Garbaras, A., Skipitytė, R., Barisevičiūtė, R., Šilobritienė, B., Stankevičius, A., 2012. Distribution of trace elements and radionuclides in the Curonian Lagoon and the Baltic Sea. In: IEEE/OES Baltic 2012 International Symposium “Ocean: Past, Present and Future. Climate Change Research, Ocean Observations & Advanced Technologies for Regional Sustainability”, http://dx.doi.org/10.1109/BALTIC.2012.6249205.
  • [33] Remeikaitė-Nikienė, N., Lujanienė, G., Malejevas, V., Barisevičiūtė, R., Žilius, M., Garnaga-Budrė, G., Stankevičius, A., 2016. Distribution and sources of organic matter in sediments of the southeastern Baltic Sea. J. Mar. Syst. 157, 75-81, http://dx.doi.org/10.1016/j.jmarsys.2015.12.011.
  • [34] Remeikaitė-Nikienė, N., Lujanienė, G., Malejevas, V., Barisevičiūtė, R., Zilius, M., Vybernaitė-Lubienė, I., Garnaga-Budrė, G., Stankevičius, A., 2017. Assessing nature and dynamics of POM in transitional environment (the Curonian Lagoon, SE Baltic Sea) using a stable isotope approach. Ecol. Indic. 82, 217-226, http://dx.doi.org/10.1016/j.ecolind.2017.06.035.
  • [35] Selvaraj, K., Parthiban, G., Chen, C. T. A., Lou, J.-Y., 2010. Anthropogenic effects on sediment quality offshore southwestern Taiwan: assessing the sediment core geochemical record. Cont. Shelf. Res. 30 (10-11), 1200-1210, http://dx.doi.org/10.1016/j.csr.2010.03.010.
  • [36] The Nemunas River Basin District Management Plan, 2010. Approved by Resolution No. 1098 of the Government of the Republic of Lithuania of 21 July 2010, http://vanduo.gamta.lt/files/Nemunas%20river%20management%20plan.pdf.
  • [37] Thorsson, M. H., Hedman, J. E., Bradshaw, C., Gunnarsson, J. S., Gilek, M., 2008. Effects of settling organic matter on the bioaccumulation of cadmium and BDE-99 by Baltic Sea benthic invertebrates. Mar. Environ. Res. 65, 264-281.
  • [38] Trimonis, E., Gulbinskas, S., Kuzavinis, M., 2003. The Curonian Lagoon bottom sediments in the Lithuanian water area. Baltica 16, 13-20.
  • [39] Turekian, K. K., Wedepohl, K. H., 1961. Distribution of the elements in Some Major Units of the Earth's Crust. Geol. Soc. Am. Bull. 72, 175-192.
  • [40] Vaalgamaa, S., Conley, D. J., 2008. Detecting environmental change in estuaries: nutrient and heavy metal distributions in sediment cores in estuaries from the Gulf of Finland, Baltic Sea. Estuar. Coast. Shelf Sci. 76 (1), 45-56, http://dx.doi.org/10.1016/j.ecss.2007.06.007.
  • [41] Vallius, H., 1999. Anthropogenically derived heavy metals in recent sediments of the Gulf of Finland, Baltic Sea. Chemosphere 38 (5), 945-962.
  • [42] Wang, Y. Q., Yang, L. Y., Kong, L. H., Liu, E. F., Wang, L. F., Zhu, J. R., 2015. Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China. Catena 125, 200-205, http://dx.doi.org/10.1016/j.catena.2014.10.023.
  • [43] Yurkovskis, A., Poikāne, R., 2008. Biogeochemical, physical and anthropogenic transformations in the Daugava River estuary and plume, and the open Gulf of Riga (Baltic Sea) indicated by major and trace elements. J. Mar. Syst. 70 (1-2), 77-96, http://dx.doi.org/10.1016/j.jmarsys.2007.03.003.
  • [44] Zalewska, T., Woroń, J., Danowska, B., Suplińska, M., 2015. Temporal changes in Hg, Pb, Cd and Zn environmental concentrations in the southern Baltic Sea sediments dated with 210Pb method. Oceanologia 57 (1), 32-43, http://dx.doi.org/10.1016/j.oceano.2014.06.003.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf998ea3-cb5a-4e61-8a0d-306395c7ceb7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.