Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, a new cocrystal named RDX:TNT is introduced and characterized. The DSC profile of the cocrystal exhibits a decomposition temperature of 217.71℃, a melting point of 78.30 ℃, and the thermal behaviour of melt-cast formulations. The results confirmed that the performance properties of the cocrystal are improved compared to TNT. The SEM images revealed that the cocrystal has a different morphology to its individual components. Furthermore, the existence of intermolecular hydrogen bonding is proven according to transitions in the FT-IR spectrum. The powder X-ray diffraction pattern verified the different crystal structure of the cocrystal by comparison to the individual components.
Słowa kluczowe
Rocznik
Tom
Strony
94--106
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Chemistry and Chemical Engineering, Malek-ashtar University of Technology, Tehran, Iran
autor
- Faculty of Chemistry and Chemical Engineering, Malek-ashtar University of Technology, Tehran, Iran
autor
- Faculty of Chemistry and Chemical Engineering, Malek-ashtar University of Technology, Tehran, Iran
Bibliografia
- [1] Baumann, M.; Baxendale, I. R. An Overview of the Synthetic Routes to the Best Selling Drugs Containing 6-membered Heterocycles. Beilstein J. Org. Chem. 2013, 9: 2265.
- [2] Aakeröy, C.B.; Sinha, A.S. Co-Crystals: Preparation, Characterization and Applications. R. Soc. Chem., 2018, p. 24; ISBN: 978-1-78801-115-0; https://doi.org/10.1039/9781788012874.
- [3] Cherukuvada, S.; Kaur, R.; Row, T.N.G. Co-Crystallization and Small Molecule Crystal Form Diversity: from Pharmaceutical to Materials Applications. CrystEngComm. 2016, 18: 8528-8555; https://doi.org/10.1039/C6CE01835A.
- [4] Akhavan, J. The Chemistry of Explosives. 3rd Ed., R. Soc. Chem., 2011; ISBN: 9781849733304.
- [5] Zohari, N.; Mohammadkhani, F.G. Prediction of the Density of Energetic Co-crystals: a Way to Design High Performance Energetic Materials. Cent. Eur. J. Energ. Mater. 2020, 17(1): 31-48; https://doi.org/10.22211/cejem/118858.
- [6] Xue, Z.H.; Huang, B.; Li, H.; Yan, Q. Design: Nitramine-based Energetic Cocrystals with Improved Stability and Controlled Reactivity. Cryst. Growth Des. 2020, 20: 8124-8147; https://doi.org/10.1021/acs.cgd.0c01122.
- [7] Desiraju, G.R.; Vittal, J.J.; Ramanan, A. Crystal Engineering: A Textbook. World Scientific Publishing Co., 2011.
- [8] Aakeröy, C.B.; Beatty, A.M.; Helfrich, B.A. “Total Synthesis” Supramolecular Style: Design and Hydrogen-Bond-Directed Assembly of Ternary Supermolecules. Angew. Chem., Int. Ed. 2001, 40: 3240-3242; https://doi.org/10.1002/1521-3773(20010903)40:17<3240::AID-ANIE3240>3.0.CO;2-X.
- [9] Trask, A.V.; Motherwell, W.D.S.; Jones, W. Solvent-Drop Grinding: Green Polymorph Control of Cocrystallisation. ChemComm. 2004, 7: 890-891; https://doi.org/10.1039/B400978A.
- [10] Plechkova, N.V.; Seddon, K.R. Applications of Ionic Liquids in the Chemical Industry. Chem. Soc. Rev. 2008, 37: 123-150; https://doi.org/10.1039/B006677J.
- [11] Van der Heijden, A.E.D.M.; Bouma, R.H.B. Design: Crystallization and Characterization of RDX, HMX, and CL-20. Cryst. Growth Des. 2004, 4(5): 999-1007; https://doi.org/10.1021/cg049965a.
- [12] Yang, Z.; Zhang, Y.; Li, H.; Zhou, X.; Nie, F.; Li, J.; Huang, H. Preparation, Structure and Properties of CL-20/TNT Cocrystal. Chin. J. Energ. 2012, 20: 674-679; https://doi.org/10.3969/j.issn.1006-9941.2012.06.003.
- [13] Li, H.; An, C.; Guo, W.; Geng, X.; Wang, J.; Xu, W. Explosives, Pyrotechnics: Preparation and Performance of Nano HMX/TNT Cocrystals. Propellants Explos. Pyrotech. 2015, 40(5): 652-658; https://doi.org/10.1002/prep.201400175.
- [14] Guo, C.; Zhang, H.; Wang, X.; Liu, X.; Sun, J. Study on a Novel Energetic Cocrystal of TNT/TNB. J. Mater. Sci. 2013, 48: 1351-1357; https://doi.org/10.1007/s10853-012-6881-5.
- [15] Bennion, J.C.; Siddiqi, Z.R.; Matzger, A. A Melt Castable Energetic Cocrystal. ChemComm. 2017, 53: 6065-6068; https://doi.org/10.1039/C7CC02636F.
- [16] Bennion, J.C.; Matzger, A. Development and Evolution of Energetic Cocrystals.Acc. Chem. Res. 2021, 54: 1699-1710; https://doi.org/10.1021/acs.accounts.0c00830.
- [17] Sun, S.; Zhang, H.; Xu, J.; Wang, S.; Zhu, C.; Wang, H.; Ding, R.; Yu, Z.; Sun, J. Two Novel Melt-Cast Cocrystal Explosives Based on 2,4-Dinitroanisole with Significantly Decreased Melting Point. Cryst. Growth Des. 2019, 19(12): 6826-6830; https://doi.org/10.1021/acs.cgd.9b00680.
- [18] Yuan, M.; Hao, S.L.; Li, H.Z.; Liu, Y.C.; Yang, Z.W. Preparation and Performance of BTF-DNAN Cocrystal Explosive. Chin. J. Energ. 2015, 23: 1228; https://doi.org/10.11943/j.issn.1006-9941.2015.12.015.
- [19] Zohari, N.; Mohammadkhani, F.G.; Montazeri, M.; Roosta, S.T.; Hosseini, S.G.; Zaree, M.A. Synthesis and Characterization of a Novel Explosive HMX/BTNEN (2:1) Cocrystal. Propellants Explos. Pyrotech. 2021, 46(2): 329-333; https://doi.org/10.1002/prep.202000202.
- [20] Xiao, L.; Guo, S.; Su, H.; Gou, B.; Liu, Q.; Hao, G.; Hu, Y.; Wang, X.; Jiang, W. Preparation and Characteristics of a Novel PETN/TKX-50 Co-Crystal by a Solvent/Non-Solvent Method. RSC Adv. 2019, 9: 9204-9210; https://doi.org/10.1039/C8RA10512J.
- [21] Hanafi, S.; Trache, D.; Meziani, R.; Boukciat, H.; Mezroua, A.; Tarchoun, A.F.; Derradji, M. Synthesis, Characterization and Thermal Decomposition Behavior of a Novel HNTO/AN Co-Crystal as a Promising Rocket Propellant Oxidizer. Chem. Eng. J. 2021, 417 paper 128010; https://doi.org/10.1016/j.cej.2020.128010.
- [22] Fu, Y.; Zhao, P.; Yang, L.; Miao, R.; Zhang, C.; Guo, Z.; Liu, Y. Effect of Cocrystal Behavior on Sensitivity and Thermal Decomposition Mechanisms of CL-20/HMX via Molecular Dynamics Simulations. ES Mater. Manuf. 2018, 1: 50-56; https://doi.org/10.30919/esmm5f126.
- [23] Wu, J.T.; Zhang, J.G.; Li, T.; Li, Z.M.; Zhang, T. A Novel Cocrystal Explosive NTO/TZTN with Good Comprehensive Properties. Rsc. Adv. 2015, 5: 28354-28359; https://doi.org/10.1039/C5RA01124H.
- [24] Li, J.; Jiao, Q.; Gong, Y.; Wang, Y.; Liang, T.; Sun, J. Explosive Performance of HMX/NTO Co-Crystal. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 292 paper 012032; https://doi.org/10.1088/1757-899X/292/1/012032.
- [25] Gao, H.; Wang, Q.; Ke, X.; Liu, J.; Hao, G.; Xiao, L.; Chen, T.; Jiang, W. Preparation and Characterization of an Ultrafine HMX/NQ Co-Crystal by Vacuum Freeze Drying Method. Rsc. Adv. 2017, 7: 46229-46235; https://doi.org/10.1039/C7RA06646E.
- [26] Sultan, M.; Wu, J.; Haq, I.U.; Imran, M.; Yang, L.; Wu, J.; Lu, J.; Chen, L. Recent Progress on Synthesis, Characterization, and Performance of Energetic Cocrystals: A Review. Molecules 2022, 27(15) paper 4775; https://doi.org/10.3390/molecules27154775.
- [27] Ravi, P.; Badgujar, D.M.; Gore, G.M.; Tewari, S.P.; Sikder, A.K. Review on Melt Cast Explosives. Propellants Explos. Pyrotech. 2011, 36(5): 393-403; https://doi.org/10.1002/prep.201100047.
- [28] Agrawal, J.P.; Hodgson, R. Organic Chemistry of Explosives. John Wiley & Sons, 2007.
- [29] Guo, D.; An, Q.; Zybin, S.V.; Goddard III, W.A; Huang, F.; Tang, B. The Co-Crystal of TNT/CL-20 Leads to Decreased Sensitivity toward Thermal Decomposition from First Principles Based Reactive Molecular Dynamics. J. Mater. Chem. 2015, 3: 5409-5419; https://doi.org/10.1039/C4TA06858K.
- [30] Shi, Y.B.; Gong, J.; Hu, X.Y.; Ju, X. Comparative Investigation on the Thermostability, Sensitivity, and Mechanical Performance of RDX/HMX Energetic Cocrystal and Its Mixture. J. Mol. Model. 2020, 26 paper 176; https://doi.org/10.1007/s00894-020-04426-0.
- [31] Millar, D.I.; Oswald, I.D.; Francis, D.J.; Marshall, W.G.; Pulham, C.R.; Cumming, A.S. The Crystal Structure of β-RDX ‒ An Elusive Form of an Explosive Revealed. Chem. Comm. 2009, 5: 562-564; https://doi.org/10.1039/B817966B.
- [32] Miller, G.R.; Garroway, A.N. A Review of the Crystal Structures of Common Explosives. Part I: RDX, HMX, TNT, PETN, and Tetryl. Report NRL/MR/6120-01-8585, Naval Research Laboratory, 2001.
- [33] Kamlet, M.J.; Jacobs, S.J. Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C–H–N–O Explosives. J. Chem. Phys. 1968, 48: 23-35; https://doi.org/10.1063/1.1667908.
- [34] Rothstein, L.R.; Petersen, R. Predicting High Explosive Detonation Velocities from their Composition and Structure. Propellants Explos. Pyrotech. 1979, 4(3): 56-60; https://doi.org/10.1002/prep.19790040305.
- [35] Zohari, N.; Montazeri, M.; Hosseini, S.G. Estimation of the Detonation Pressure of Co-crystal Explosives through a Novel, Simple and Reliable Model. Cent. Eur. J. Energ. Mat. 2020, 17(4): 492-505; https://doi.org/10.22211/cejem/131687.
- [36] Zohari, N.; Mohammadkhani, F.G. Detonation Velocity Assessment of Energetic Cocrystals using QSPR Approach. Z. Anorg. Allg. Chem. 2020, 646: 30-35; https://doi.org/10.1002/zaac.201900202.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf8cd682-cfda-46a6-9ac0-c043b937217d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.