PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The cosmetic potential evaluation of the fungus resistant grapevine extracts using metabolomic approaches

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Natural product effectiveness is an important criterion to develop new active ingredients for cosmetic industry. Plant metabolites exhibit wide range of natural activities and in recent years, there has been a growing interest in the development of plant-based cosmetic products. The complex composition of plant extracts and their natural variability makes it difficult to select and produce plant-based natural ingredients with the most effective and constant biological capacity. Grapevine (Vitis vinifera L.) is known for its abundance in bioactive polyphenols, but the quality and the quantity in polyphenols vary depending on several parameters including the variety, the geographical origin, the year, and the extraction methods. In the temperate regions of Central Europe, there is currently significant growth in the cultivation of grape varieties that are well-suited to the humid and cool climate. Interestingly, these fungus-resistant varieties exhibit a specific metabolic composition associated to climatic adaptation, paving the way for the development of new active ingredients for skincare. Metabolomics aims to detect, identify and quantify small molecules in living system in response to environmental changes. In this literature review, we present the advantage of metabolomic approaches to evaluate the cosmetic potential of fungus-resistant varieties cultivated in Central and Eastern Europe.
Czasopismo
Rocznik
Strony
187--211
Opis fizyczny
Bibliogr. 61 poz., 1 il. kolor., rys.
Twórcy
  • Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
  • EA 2106 «Biomolécules et Biotechnologie Végétales», UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F37200 Tours, France
  • Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
  • Department of Plant Biotechnology and Medicinal Fungi Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688 Cracow, Poland
  • EA 2106 «Biomolécules et Biotechnologie Végétales», UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F37200 Tours, France
  • Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
  • Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
autor
  • Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
  • Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
autor
  • Rolniczy Zakład Doświadczalny Łazy, Jagiellonian University in Cracow, 24 Gołębia St., 31-007 Cracow, Poland
  • Institut de Chimie Organique et Analytique, Université d’Orléans-CNRS, UMR 7311 BP 6759, CEDEX 2, 45067 Orléans, France
  • EA 2106 «Biomolécules et Biotechnologie Végétales», UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F37200 Tours, France
  • EA 2106 «Biomolécules et Biotechnologie Végétales», UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F37200 Tours, France
Bibliografia
  • [1] Topalović, A,; Knežević, M,; Bajagić, B,; Ivanović, L,; Milašević, I,; Đurović, D,; Mugoša, B,; Podolski-Renić, A,; Pešić, M.; Grape (Vitis vinifera L.): health benefits and effects of growing conditions on quality parameters. In: Ozturk M, Dilfuza E, Pešić M, editors. Biodiversity and Biomedicine: Our Future provides. Cambridge (Massachusetts, United States): Academic Press - Elsevier. 2020. 385-401. DOI: 10.1016/B978-0-12-819541-3.00020-7
  • [2] Anđelković, M.; Radovanović, B.; Anđelković, A.M.; Radovanović, V., Phenolic Compounds and Bioactivity of Healthy and Infected Grapevine Leaf Extracts from Red Varieties Merlot and Vranac (Vitis Vinifera L.). Plant Foods Hum. Nutr. 2015, 70, 317-323. DOI:10.1007/s11130-015-0496-3
  • [3] Malinowska, M.A.; Sharafan, M.; Lanoue, A.; Ferrier, M. Trans -Resveratrol as a Health Beneficial Molecule: Activity, Sources and Methods of Analysis. Sci. Radices. 2023, 2, 268-294. DOI:10.58332/scirad2023v2i3a04
  • [4] Bonkowski, M.S.; Sinclair, D.A.; Slowing Ageing by Design: The Rise of NAD+ and Sirtuin-Activating Compounds. Nat. Rev. Mol. Cell Biol. 2016, 17, 679-690. DOI:10.1038/nrm.2016.93
  • [5] Malinowska, M.A.; Billet, K.; Drouet, S.; Munsch, T.; Unlubayir, M.; Tungmunnithum, D.; Giglioli-Guivarc’h, N.; Hano, C.; Lanoue,; A. Grape Cane Extracts as Multifunctional Rejuvenating Cosmetic Ingredient: Evaluation of Sirtuin Activity, Tyrosinase Inhibition and Bioavailability Potential. Molecules. 2020, 25, 2203. DOI:10.3390/molecules25092203
  • [6] Baroi, A.M.; Popitiu, M.; Fierascu, I.; Sărdărescu, I.D.; Fierascu, R.C.; Grapevine Wastes: A Rich Source of Antioxidants and Other Biologically Active Compounds. Antioxidants. 2022, 11. DOI:10.3390/antiox11020393
  • [7] Maluf, D.F.; Gonçalves, M.M.; D’Angelo, R.W.O.; Girassol, A.B.; Tulio, A.P.; Pupo, Y.M.; Farago, P. V.; Cytoprotection of Antioxidant Biocompounds from Grape Pomace: Further Exfoliant Phytoactive Ingredients for Cosmetic Products. Cosmetics. 2018, 5, 1-11. DOI:10.3390/COSMETICS5030046
  • [8] Hoss, I.; Rajha, H.N.; Khoury, R. El; Youssef, S.; Manca, M.L.; Manconi, M.; Louka, N.; Maroun, R.G.; Valorization of Wine-Making By-Products’ Extracts in Cosmetics. Cosmetics. 2021, 8, 1-29. DOI: 10.3390/cosmetics8040109
  • [9] Zillich, O. V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M.; Polyphenols as Active Ingredients for Cosmetic Products. Int. J. Cosmet. Sci. 2015, 37, 455-464. DOI:10.1111/ics.12218
  • [10] Yarovaya, L.; Waranuch, N.; Wisuitiprot, W.; Khunkitti, W.; Effect of Grape Seed Extract on Skin Fibroblasts Exposed to UVA Light and Its Photostability in Sunscreen Formulation. J. Cosmet. Dermatol. 2021, 20, 1271-1282. DOI:10.1111/jocd.13711
  • [11] Sharafan, M.; Malinowska, M.A.; Kubicz, M.; Kubica, P.; Marin-pierre, G.; Abdallah, C.; Ferrier, M.; Hano, C.; Giglioli-guivarc, N.; Shoot Cultures of Vitis Vinifera (Vine Grape) Different Cultivars as a Promising Innovative Cosmetic Raw Material—Phytochemical Profiling, Antioxidant Potential, and Whitening Activity. Molecules. 2023, 28, 6868. DOI: 10.3390/molecules28196868
  • [12] European Commission, Vineyards in the EU - Statistics; 2020 (accessed 6 September 2024).
  • [13] Kunicka-Styczynska, A.; Czyzowska, A.; Rajkowska, K.; Wilkowska, A.; Dziugan, P.; The Trends and Prospects of Winemaking in Poland, in.: Grape and Wine Biotechnology, (Ed.: Morata A., Loira I.) 2016, 401-413, InTech, DOI:10.5772/64976
  • [14] Gąstoł, M.; Vineyard Performance and Fruit Quality of Some Interspecific Grapevine Cultivars in Cool Climate Conditions. Folia Hortic. 2015, 27, 21-31. DOI:10.1515/fhort-2015-0011
  • [15] Ligenzowska, J.; Pink, M.; The Problems of Winemaking in Poland: A Case Study of Winemakers on the Małopolska Wine Route.; 2016; pp. 213-223. DOI: 10.15414/isd2016.s3.07
  • [16] Muzolf-Panek, M.; Waśkiewicz, A.; Relationship between Phenolic Compounds, Antioxidant Activity and Color Parameters of Red Table Grape Skins Using Linear Ordering Analysis. Appl. Sci. 2022, 12. DOI:10.3390/app12126146
  • [17] Lisek, J.; Yielding and Healthiness of Selected Grape Cultivars for Processing in Central Poland. J. Fruit Ornam. Plant Res. 2010, 18, 265-272.
  • [18] Ehrhardt, C.; Arapitsas, P.; Stefanini, M.; Flick, G.; Mattivi, F.; Analysis of the Phenolic Composition of Fungus-Resistant Grape Varieties Cultivated in Italy and Germany Using UHPLC-MS/MS. J. Mass Spectrom. 2014, 49, 860-869. DOI:10.1002/jms.3440
  • [19] Lisek, J. Assessment of Selected Traits of 18 Traditional Wine Vitis Vinifera Cultivars in Central Poland. 2013, 18-21.
  • [20] Billet, K.; Houillé, B.; Dugé de Bernonville, T.; Besseau, S.; Oudin, A.; Courdavault, V.; Delanoue, G.; Guérin, L.; Clastre, M.; Giglioli-Guivarc’h, N.; et al.; Field-Based Metabolomics of Vitis Vinifera L. Stems Provides New Insights for Genotype Discrimination and Polyphenol Metabolism Structuring. Front. Plant Sci. 2018, 9, 1-15. DOI:10.3389/fpls.2018.00798
  • [21] Billet, K.; Salvador-Blanes, S.; Dugé De Bernonville, T.; Delanoue, G.; Hinschberger, F.; Oudin, A.; Courdavault, V.; Pichon, O.; Besseau, S.; Leturcq, S.; et al.; Terroir Influence on Polyphenol Metabolism from Grape Canes: A Spatial Metabolomic Study at Parcel Scale. Molecules. 2023, 28, 4555. DOI:10.3390/molecules28114555
  • [22] Ferrier, M.; Billet, K.; Drouet, S.; Tungmunnithum, D.; Malinowska, M.A.; Marchal, C.; Dedet, S.; Giglioli-Guivarc’h, N.; Hano, C.; Lanoue, A.; Identifying Major Drivers of Antioxidant Activities in Complexpolyphenol Mixtures from Grape Canes. Molecules. 2022, 27, 4029. DOI: 10.3390/molecules27134029
  • [23] Malinowska, M.A.; Billet, K.; Drouet, S.; Munsch, T.; Unlubayir, M.; Tungmunnithum, D.; Giglioli-Guivarc’H, N.; Hano, C.; Lanoue, A.; Grape Cane Extracts as Multifunctional Rejuvenating Cosmetic Ingredient: Evaluation of Sirtuin Activity, Tyrosinase Inhibition and Bioavailability Potential. Molecules. 2020, 25, 1-16. DOI:10.3390/molecules25092203
  • [24] Pedneault, K.; Provost, C.; Fungus Resistant Grape Varieties as a Suitable Alternative for Organic Wine Production: Benefits, Limits, and Challenges. Sci. Hortic. (Amsterdam). 2016, 208, 1-21. DOI:10.1016/j.scienta.2016.03.016
  • [25] Ruocco, S. Chemical Characteristics of Wine Made by Disease Tolerant Varieties, (Doctoral Thesis), 2018, 3-114.
  • [26] Wojdyło, A.; Samoticha, J.; Nowicka, P.; Chmielewska, J.; Characterisation of (Poly)Phenolic Constituents of Two Interspecific Red Hybrids of Rondo and Regent (Vitis Vinifera) by LC-PDA-ESI-MS QTof. Food Chem. 2018, 239, 94-101. DOI:10.1016/j.foodchem.2017.06.077
  • [27] Pink, M.; Poland as a Wine Country? From Traditions to Emerging Opportunities. Probl. Small Agric. Holdings. 2015, 2, 37-56. DOI:10.15414/isd2016.s3.07
  • [28] Choi, S.R.; Lee, M.Y.; Kim, S.A.; Oh, J.; Hyun, D.W.; Lee, S.; Lee, B.H.; Cho, J.Y.; Lee, C.H.; Nontargeted Metabolomics as a Screening Tool for Estimating Bioactive Metabolites in the Extracts of 50 Indigenous Korean Plants. Metabolites. 2021, 11. DOI:10.3390/metabo11090585
  • [29] Billet, K.; Houillé, B.; Besseau, S.; Mélin, C.; Oudin, A.; Papon, N.; Courdavault, V.; Clastre, M.; Giglioli-Guivarc’h, N.; Lanoue, A.; Mechanical Stress Rapidly Induces E-Resveratrol and E-Piceatannol Biosynthesis in Grape Canes Stored as a Freshly-Pruned Byproduct. Food Chem. 2018, 240, 1022-1027. DOI:10.1016/j.foodchem.2017.07.105
  • [30] Saurina, J.; Characterization of Wines Using Compositional Profiles and Chemometrics. TrAC - Trends Anal. Chem. 2010, 29, 234-245. DOI:10.1016/j.trac.2009.11.008
  • [31] Billet, K.; Unlubayir, M.; Munsch, T.; Malinowska, M.A.; Dugé de Bernonville, T.; Oudin, A.; Courdavault, V.; Besseau, S.; Giglioli-Guivarc’h, N.; Lanoue, A.; Post-Harvest Treatment on Wood Biomass from a Large Collection of European Grape Varieties: Impact for the Selection of Polyphenol-Rich Byproducts. ACS Sustain. Chem. Eng. Submitt. 2021, 9, 3509-3517. DOI:10.1021/acssuschemeng.0c07875
  • [32] Pontes, J.G.M.; Brasil, A.J.M.; Cruz, G.C.F.; de Souza, R.N.; Tasic, L.; NMR-Based Metabolomics Strategies: Plants, Animals and Humans. Anal. Methods. 2017,9,1078. DOI:10.1039/C6AY03102A
  • [33] Beale, D.J.; Pinu, F.R.; Kouremenos, K.A.; Poojary, M.M.; Narayana, V.K.; Boughton, B.A.; Kanojia, K.; Dayalan, S.; Jones, O.A.H.; Dias, D.A.; Review of Recent Developments in GC-MS Approaches to Metabolomics-Based Research. Metabolomics. 2018, 14, 1-31. DOI: 10.1007/s11306-018-1449-2
  • [34] Chaleckis, R.; Meister, I.; Zhang, P.; Wheelock, C.E.; Challenges, Progress and Promises of Metabolite Annotation for LC-MS-Based Metabolomics. Curr. Opin. Biotechnol. 2019, 55, 44-50. DOI: 10.1016/j.copbio.2018.07.010
  • [35] Amara, A.; Frainay, C.; Jourdan, F.; Naake, T.; Neumann, S.; Novoa-del-Toro, E.M.; Salek, R.M.; Salzer, L.; Scharfenberg, S.; Witting, M.; Networks and Graphs Discovery in Metabolomics Data Analysis and Interpretation. Front. Mol. Biosci. 2022, 9, 1-15. DOI:10.3389/fmolb.2022.841373
  • [36] Worley, B.; Powers, R.; Multivariate Analysis in Metabolomics. Curr. Metabolomics. 2013, 1, 92-107. DOI: 10.2174/2213235X11301010092
  • [37] Figueiredo-González, M.; Martínez-Carballo, E.; Cancho-Grande, B.; Santiago, J.L.; Martínez, M.C.; Simal-Gándara, J.; Pattern Recognition of Three Vitis Vinifera L. Red Grapes Varieties Based on Anthocyanin and Flavonol Profiles, with Correlations between Their Biosynthesis Pathways. Food Chem. 2012, 130, 9-19. DOI:10.1016/j.foodchem.2011.06.006
  • [38] Pereira, G.E.; Gaudillere, J.P.; Leeuwen, C. Van; Hilbert, G.; Maucourt, M.; Deborde, C.; Moing, A.; Rolin, D.; 1H NMR Metabolite Fingerprints of Grape Berry: Comparison of Vintage and Soil Effects in Bordeaux Grapevine Growing Areas. Anal. Chim. Acta. 2006, 563, 346-352. DOI:10.1016/j.aca.2005.11.007
  • [39] Berrueta, L.A.; Alonso-Salces, R.M.; Héberger, K. Supervised Pattern Recognition in Food Analysis. J. Chromatogr. A. 2007, 1158, 196-214. DOI: 10.1016/j.chroma.2007.05.024
  • [40] Perestrelo, R.; Barros, A.S.; Rocha, S.M.; Câmara, J.S.; Establishment of the Varietal Profile of Vitis Vinifera L. Grape Varieties from Different Geographical Regions Based on HS-SPME/GC-QMS Combined with Chemometric Tools. Microchem. J. 2014, 116, 107-117. DOI:10.1016/j.microc.2014.04.010
  • [41] Ehrhardt, C.; Arapitsas, P.; Stefanini, M.; Flick, G.; Mattivi, F.; Analysis of the Phenolic Composition of Fungus‐resistant Grape Varieties Cultivated in Italy and Germany Using UHPLC‐MS/MS. J. Mass Spectrom. 2014, 49, 860-869. DOI:10.1002/jms.3440
  • [42] Billet, K.; Malinowska, M.A.; Munsch, T.; Unlubayir, M.; de Bernonville, T.D.; Besseau, S.; Courdavault, V.; Oudin, A.; Pichon, O.; Clastre, M.; et al.; Stilbenoid-Enriched Grape Cane Extracts for the Biocontrol of Grapevine Diseases, in.: Plant Defence: Biological Control, 2020, 215-239, Springer. DOI:10.1007/978-3-030-51034-3_9
  • [43] Jeandet, P.; Vannozzi, A.; Sobarzo-Sánchez, E.; Uddin, M.S.; Bru, R.; Martínez-Márquez, A.; Clément, C.; Cordelier, S.; Manayi, A.; Nabavi, S.F.; et al.; Phytostilbenes as Agrochemicals: Biosynthesis, Bioactivity, Metabolic Engineering and Biotechnology. Nat. Prod. Rep. 2021, 38, 1282-1329. DOI:10.1039/d0np00030b
  • [44] Langcake, P.; Cornford, C.A.; Pryce, R.J.; Identification of Pterostilbene as a Phytoalexin from Vitis Vinifera Leaves. Phytochemistry. 1979, 18, 1025-1027. DOI:10.1016/S0031-9422(00)91470-5
  • [45] Chong, J.; Poutaraud, A.; Hugueney, P.; Metabolism and Roles of Stilbenes in Plants. Plant Sci. 2009, 177, 143-155. DOI:10.1016/j.plantsci.2009.05.012
  • [46] Tříska, J.; Vrchotová, N.; Balík, J.; Soural, I.; Sotolář, R.; Variability in the Content of Trans-Resveratrol, Trans-ε-Viniferin and R2-Viniferin in Grape Cane of Seven Vitis Vinifera L. Varieties during a Three-Year Study. Molecules. 2017, 22, 928. DOI:10.3390/molecules22060928
  • [47] Chidambara Murthy, K. N.; Singh, R. P.; Jayaprakasha, G. K.; Antioxidant Activities of Grape (Vitis vinifera) Pomace Extracts. J. Agric. Food Chem. 2002, 50, 5909−5914. DOI:10.1021/jf0257042
  • [48] Karacabey, E.; Mazza, G.; Optimisation of Antioxidant Activity of Grape Cane Extracts Using Response Surface Methodology. Food Chem. 2010, 119, 343-348. DOI:10.1016/j.foodchem.2009.06.029
  • [49] Monteiro, G.C.; Minatel, I.O.; Junior, A.P.; Gomez-Gomez, H.A.; de Camargo, J.P.C.; Diamante, M.S.; Pereira Basílio, L.S.; Tecchio, M.A.; Pereira Lima, G.P.; Bioactive Compounds and Antioxidant Capacity of Grape Pomace Flours. Lwt. 2021, 135, 110053. DOI:10.1016/j.lwt.2020.110053
  • [50] Llobera, A.; Study on the Antioxidant Activity of Grape Stems (Vitis Vinifera). A Preliminary Assessment of Crude Extracts. Pol. J. Food Nutr. Sci. 2012, 3, 500-504. DOI:10.4236/fns.2012.34070
  • [51] Oprica, L.; Vezeteu, G.; Grigore, M.N.; Differential Content of the Total Polyphenols and Flavonoids in Three Romanian White Grape Cultivars. Iran. J. Public Health. 2016, 45, 826-827. PMID: 27648431.
  • [52] Weidner, S.; Rybarczyk, A.; Karamać, M.; Król, A.; Mostek, A.; Grȩbosz, J.; Amarowicz, R.; Differences in the Phenolic Composition and Antioxidant Properties between Vitis Coignetiae and Vitis Vinifera Seeds Extracts. Molecules. 2013, 18, 3410-3426. DOI:10.3390/molecules18033410
  • [53] Lingua, M.S.; Fabani, M.P.; Wunderlin, D.A.; Baroni, M. V.; In Vivo Antioxidant Activity of Grape, Pomace and Wine from Three Red Varieties Grown in Argentina: Its Relationship to Phenolic Profile. J. Funct. Foods. 2016, 20, 332-345. DOI:10.1016/j.jff.2015.10.034
  • [54] Tarko, T.; Duda-Chodak, A.; Sroka, P.; Satora, P.; Jurasz, E.; Polish Wines: Characteristics of Cool-Climate Wines. J. Food Compos. Anal. 2010, 23, 463-468. DOI:10.1016/j.jfca.2010.01.009
  • [55]. Tomazelli, L.C.; de Assis Ramos, M.M.; Sauce, R.; Cândido, T.M.; Sarruf, F.D.; de Oliveira Pinto, C.A.S.; de Oliveira, C.A.; Rosado, C.; Velasco, M.V.R.; Baby, A.R.; SPF Enhancement Provided by Rutin in a Multifunctional Sunscreen. Int. J. Pharm. 2018, 552, 401-406. DOI:10.1016/j.ijpharm.2018.10.015
  • [56] Limsuwan, T.; Amnuikit, T.; Effect of Grape Seed Extract in Sunscreen Lotion on Sun Protection Factor (SPF) Determined by in Vitro Method. Proceedings of the 6th International Conference on Bioinformatics and Biomedical Science - ICBBS ’17. 2017, 109-112. DOI:10.1145/3121138.3121192
  • [57] Letsiou, S.; Kapazoglou, A.; Tsaftaris, A.; Transcriptional and Epigenetic Effects of Vitis Vinifera L . Leaf Extract on UV - Stressed Human Dermal Fibroblasts. Mol. Biol. Rep. 2020, 8, 5763-5772. DOI:10.1007/s11033-020-05645-7
  • [58] Cefali, L.C.; Ataide, J.A.; Maria, I.; Sousa, D.O.; Figueiredo, M.C.; Lucia, A.; Gois, T.; Foglio, M.A.; Figueiredo, M.C.; Lucia, A.; et al.; In Vitro Solar Protection Factor , Antioxidant Activity , and Stability of a Topical Formulation Containing Benitaka Grape (Vitis Vinifera L.) Peel Extract. Nat. Prod. Res. 2019, 31, 1-6. DOI:10.1080/14786419.2018.1550758
  • [59] Munsch, T.; Malinowska, M.A.; Unlubayir, M.; Ferrier, M.; Abdallah, C.; Gémin, M.P.; Billet, K.; Lanoue, A.; Classification of Grape Seed Residues from Distillation Industries in Europe According to the Polyphenol Composition Highlights the Influence of Variety, Geographical Origin and Color. Food Chem. X 2024, 7, 101362. DOI: 10.1016/j.fochx.2024.101362
  • [60] Darwish, A.G.; Das, P.R.; Ismail, A.; Gajjar, P.; Balasubramani, S.P.; Sheikh, M.B.; Tsolova, V.; Sherif, S.M.; El-Sharkawy, I.; Untargeted Metabolomics and Antioxidant Capacities of Muscadine Grape Genotypes during Berry Development. Antioxidants. 2021, 10, 1-19. DOI:10.3390/antiox10060914
  • [61] Samoticha, J.; Wojdyło, A.; Golis, T.; Phenolic Composition, Physicochemical Properties and Antioxidant Activity of Interspecific Hybrids of Grapes Growing in Poland. Food Chem. 2017, 215, 263-273. DOI:10.1016/j.foodchem.2016.07.147
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf8b0653-e7ab-4d29-ba5f-60f5b6bcaa3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.