PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of main geometric characteristics of deformed sphere and standard spheroid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper we compare the geometric descriptions of the deformed sphere (i.e., the so-called λ-sphere) and the standard spheroid (namely, World Geodetic System 1984’s reference ellipsoid of revolution). Among the main geometric characteristics of those two surfaces of revolution embedded into the three-dimensional Euclidean space we consider the semi-major (equatorial) and semi-minor (polar) axes, quartermeridian length, surface area, volume, sphericity index, and tipping (bifurcation) point for geodesics. Next, the RMS (Root Mean Square) error is defined as the square-rooted arithmetic mean of the squared relative errors for the individual pairs of the discussed six main geometric characteristics. As a result of the process of minimization of the RMS error, we have obtained the proposition of the optimized value of the deformation parameter of the λ-sphere, for which we have calculated the absolute and relative errors for the individual pairs of the discussed main geometric characteristics of λ-sphere and standard spheroid (the relative errors are of the order of 10−6 – 10−9). Among others, it turns out that the value of the,sup> flattening factor of the spheroid is quite a good approximation for the corresponding value of the deformation parameter of the λ-sphere (the relative error is of the order of 10−4).
Rocznik
Strony
art. no. e147058
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
  • Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 4, 1113 Sofia, Bulgaria
  • Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko Chaussee 72, 1784 Sofia, Bulgaria
Bibliografia
  • [1] A.M. Faridi and E.L. Schucking, “Geodesics and deformed spheres,” Proc. Amer. Math. Soc., vol. 100, pp. 522–525, 1987.
  • [2] V. Kovalchuk, B. Gołubowska, and I.M. Mladenov, “Mechanics of infinitesimal test bodies on Delaunay surfaces: spheres and cylinders as limits of unduloids and their action-angle analysis,” J. Geom. Symmetry Phys., vol. 53, pp. 55–84, 2019.
  • [3] V. Kovalchuk, B. Gołubowska, and I.M. Mladenov, “Mechanics of infinitesimal gyroscopes on helicoid-catenoid deformation family of minimal surfaces,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, p. e136727, 2021.
  • [4] V. Kovalchuk and I.M. Mladenov, “λ -spheres as a new reference model for the geoid,” Math. Meth. Appl. Sci., vol. 46, pp. 4573–4586, 2023.
  • [5] V. Kovalchuk and I.M. Mladenov, “Mechanics of incompressible test bodies moving on λ -spheres,” Math. Meth. Appl. Sci., vol. 45, pp. 5559–5572, 2022.
  • [6] X. Li and H.-J. Götze, “Ellipsoid, geoid, gravity, geodesy, and geophysics,” Geophysics, vol. 66, pp. 1660–1668, 2001.
  • [7] V. Kovalchuk and I.M. Mladenov, “λ -spheres as a new reference model for geoid: explicit solutions of the direct and inverse problems for loxodromes (rhumb lines),” Mathematics, vol. 10, pp. 3356–1–10, 2022.
  • [8] V. Kovalchuk and I.M. Mladenov, “Explicit solutions for the geodetic problems on deformed sphere as reference model for the geoid,” Geom. Integr. Quantization, vol. 25, pp. 73–94, 2023.
  • [9] X. Hu, C.K. Shum, and M. Bevis, “A triaxial reference ellipsoid for the Earth,” J. Geodesy, vol. 97, pp. 29–1–15, 2023.
  • [10] “National geospatial-intelligence agency standardization document: World Geodetic System 1984. Its definition and relationships with local geodetic systems,” Department of Defence – Office of Geomatics, Tech. Rep., 2014-07-08 (NGA.STND.0036-1.0.0-WGS84).
  • [11] I.S. Gradstein and I.M. Ryzhik, Tables of Integrals, Series, and Products (Seventh Edition), A. Jeffrey and D. Zwillinger, Eds. Oxford, UK: Academic Press, 2007.
  • [12] I.M. Mladenov and M. Hadzhilazova, The Many Faces of Elastica. Cham, Switzerland: Springer, 2017.
  • [13] D.F. Lawden, Elliptic Functions and Applications. New York: Springer, 1989.
  • [14] S. Heitz, Coordinates in Geodesy. Berlin: Springer, 1985.
  • [15] A. Weintrit, “So, what is actually the distance from the equator to the pole? – Overview of the meridian distance approximations,” TransNav-Int. J. Mar. Navig. Saf. Sea Transp., vol. 7, pp. 259–272, 2013.
  • [16] G.J. Tee, “Surface area and capacity of ellipsoids in n dimensions,” N. Z. J. Math., vol. 34, pp. 165–198, 2005.
  • [17] H. Wadell, “Volume, shape, and roundness of quartz particles,” J. Geol., vol. 43, pp. 250–280, 1935.
  • [18] H. Schmidt, “Note on Lars E. Sjöberg: New solutions to the direct and indirect geodetic problems on the ellipsoid,” Zeitschrift für Geodäsie, Geoinformation und Landmanagement, vol. 131, pp. 153–154, 2006.
  • [19] E.W. Grafarend and A.A. Ardalan, “World Geodetic Datu 2000,” J. Geodesy, vol. 73, pp. 611–623, 1999.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf83f223-7d1f-4198-94fe-5fecdae73e00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.