PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of sowing density and row spacing on the susceptibility of lupine seeds to mechanical damage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Appropriate agrotechnical measures make it possible to optimise plant cultivation and obtain yields of the highest quality with an appropriate economic production index. The aim of the study was to evaluate different sowing density and row spacing on the morphological and mechanical properties of white lupine (Lupinus albus L.) seeds. The field experiment was conducted at the Experimental Station for Variety Evaluation in Przecław (50°11'25.2" N, 21°28'55.0" E). The experiment was established at two row spacings (15 cm and 30 cm) and three sowing densities (60, 75, 90 plants per m2). Mechanical parameters evaluated included destructive force FD (N), relative deformation DR (%) and destructive energy ED (mJ). Seed morphological properties such as weight, length and width were also assessed. Sphericity was also calculated. In the present study, improvements in the mechanical properties of the seeds were obtained by increasing the plant density per unit area of the experiment. In the case of morphological characteristics, only the weight of the analysed lupine seeds changed significantly as a result of row spacing. On the other hand, sowing density did not significantly affect morphological traits. of white lupine seeds. Apart from the spacing and sowing density of plants, the weather conditions in particular years of research were an important factor determining the properties of seeds. Determining the optimum sowing density and row spacing in the field contributes to the optimisation of the production process. Quasi-static mechanical tests are often used to obtain reasonable data on the physical properties of plant materials.
Wydawca
Rocznik
Strony
156--163
Opis fizyczny
Bibliogr. 43 poz., tab., wykr.
Twórcy
  • University of Rzeszow, Department of Crop Production, Zelwerowicz 4 St, Rzeszow, Poland
  • University of Rzeszow, Department of Crop Production, Zelwerowicz 4 St, Rzeszow, Poland
  • University of Rzeszow, Department of Crop Production, Zelwerowicz 4 St, Rzeszow, Poland
  • University of Rzeszow, Department of Food and Agriculture Production Engineering, Rzeszow, Poland
Bibliografia
  • ALTUNTAS E., YILDIZ M. 2007. Effect of moisture content on some physical and mechanical properties of faba bean (Vicia faba L.) grains. Journal of Food Engineering. Vol. 78 p. 174–183. DOI 10.1016/j.jfoodeng.2005.09.013.
  • ALZAMORA S.M., VIOLLAZ P.E., MARTÍNEZ V.Y., NIETO A.B., SALVATORI D. 2008. Exploring the linear viscoelastic properties structure relationship in processed fruit tissues. In: Food engineering: integrated approaches. New York, USA. Springer. Available at: https://link.springer.com/chapter/10.1007/978-0-387-75430-7_9.
  • ARÉVALOS A., REDONDO E., INSFRÁN A. 2019. Daños mecánicos en productos de la industria agrícola: Revisión de la literatura [Mechanical damage in agricultural products: literature review]. Latin American Journal of Applied Engineering. Vol. 4 p. 1–14.
  • AZADBAKHT M., GHAJARJAZI E., AMIRI E., ABDIGAOL F. 2015. Determination of some physical and mechanical properties of Pofaki variety of pea. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering. Vol. 9 p. 464–471. DOI 10.5281/zenodo.1100769.
  • BENTINI M., CAPRARA C., MARTELLI R. 2009. Physico-mechanical properties of potato tubers during cold storage. Biosystems Engineering. Vol. 104 p. 25–32. DOI 10.1016/j.biosystemseng.2009.03.007.
  • CHAMPATHI GUNATHILAKE M.C., BHAT J., SINGH I.R., THARANGA KAHAN-DAWALA K.A. 2019. Dynamics of the physical properties of soybean during storage under tropical condition. Legume Research. Vol. 42 p. 370–374. DOI 10.18805/LR-447.
  • CHENG B., RAZA A., WANG L., XU M., LU J., GAO Y., QIN S., ZHANG Y., AHMAD I., ZHOU T. 2020. Effects of multiple planting densities on lignin metabolism and lodging resistance of the strip inter-cropped soybean stem. Agronomy. Vol. 10 pp. 1177. DOI 10.3390/agronomy10081177.
  • COX W.J., CHERNEY J.H. 2011. Growth and yield responses of soybean to row spacing and seeding rates. Agronomy Journal. Vol. 103 p. 123–128. DOI 10.2134/agronj2010.0316.
  • DAMALAS C.A., KOUTROUBAS S.D. 2022. Weed competition effects on growth and yield of spring-sown white lupine. Horticulturae. Vol. 8(5), 430. DOI 10.3390/horticulturae8050430.
  • DE BRUIN J.L., PEDERSEN P. 2008. Effect of row spacing and seeding rate on soybean yield. Agronomy Journal. Vol. 100 p. 704–710. DOI 10.2134/agronj2007.0106.
  • DEVLIN D.L., FJELL D.L., SHROYER J.P., GORDEN W.B., MARSH B.H., MADDUX L.D., MARTIN V., DUNCAN S.R. 1995. Row spacing and rates of soybean in low and high yielding environments. Journal of Production Agriculture. Vol. 8 p. 215–222. DOI 10.2134/jpa1995.0215.
  • ETHRIDGE S.R., LOCKE A.M., EVERMAN W.J., JORDAN D.L., LEON R.G. 2022. Response of maize, cotton, and soybean to increased crop den sity in heterogeneous planting arrangements. Agronomy. Vol. 12, 1238. DOI 10.3390/agronomy12051238.
  • FAO undated. Crops and livestock products [online]. Rome. Food and Agriculture Organization of the United Nations. [Access 13.03.2022]. Available at: http://www.fao.org/faostat/en/#data/QC
  • GELY M.C., PAGANO A.M. 2017. Effect of moisture content on engineering properties of sorghum grains [online]. Agricultural Engineering International: CIGR Journal. Vol. 19 p. 200–209. [Access 10.04.2022]. Available at: https://cigrjournal.org/index.php/Ejounral/article/view/4145
  • HASHEMI S.M.B., KHANEGHAH A.M 2017. Characterization of novel basilseed gum active edible films and coatings containing oregano essential oil. Progress in Organic Coatings. Vol. 110 p. 35–41. DOI 10.1016/j.porgcoat.2017.04.041.
  • HASHEMI S.M.B., KHANEGHAH A.M., GHAHFARROKHI M.G., E Ş I. 2017. Basil-seed gum containing Origanum vulgare subsp. viride essential oil as edible coating for fresh cut apricots. Postharvest Biology and Technology. Vol. 125 p. 26–34. DOI 10.1016/j.postharvbio.2016.11.003.
  • HERÁK D., KABUTEY A., SEDLÁČEK A., GŰRDIL G. 2012. Mechanical behaviour of several layers of selected plant seeds under compression loading. Research in Agricultural Engineering. Vol. 58 p. 24–29. DOI 10.17221/11/2010-RAE.
  • ISIK E. 2007. Some engineering properties of soybean grains. American Journal of Food Technology. Vol. 2 p. 115–125. DOI 10.3923/ajft.2007.115.125.
  • KULIG R., ŁYSIAK G., SKONECKI S. 2015. Prediction of pelleting outcomes based on moisture versus strain hysteresis during the loading of individual pea seeds. Biosystems Engineering. Vol. 129 p. 226–236. DOI 10.1016/j.biosystemseng.2014.10.013.
  • KUŹNIAR P., JARECKI W., BOBRECKA-JAMRO D. 2013. Właściwości mechaniczne nasion wybranych roślin strączkowych a ich masa i grubość [Mechanical properties of the selected legume seeds and their weight and thickness] [online]. Inżynieria Rolnicza. Nr 4 p. 171–177. [Access 15.03.2022]. Available at: https://tiny.pl/9v8qf
  • KUŹNIAR P., SZPUNAR-KROK E., FINDURA P., BUCZEK J., BOBRECKA-JAMRO D. 2016. Physical and chemical properties of soybean seeds determine their susceptibility to mechanical damage. Zemdirbyste-Agriculture. Vol. 103(2) p. 183–192. DOI 10.13080/z-a.2016.103.024.
  • LU R.F., ABBOTT J.A. 2004. Force/deformation techniques for measuring texture. Texture Food Solid Foods. Vol. 2 p. 109–145. DOI 10.1533/978185538362.2.109.
  • LUCAS M.M., STODDARD F.L., ANNICCHIARICO P., FRÍAS J., MARTÍNEZ-VILLALUENGA C., SUSSMANN D., DURANTI M., SEGER A., ZANDER P.M., PUEYO J.J. 2015. The future of lupin as a protein crop in Europe. Frontiers in Plant Science. Vol. 6, 705. DOI 10.3389/fpls.2015.00705.
  • MIERLITA D., SIMEANU D., POP I.M., CRISTE F., POP C. 2018. Chemical composition and nutritional evaluation of the lupine seeds (Lupinus albus L.) from low-alkaloid varieties. Revista de Chimie. Vol. 69 p. 453–458. DOI 10.37358/RC.18.2.6126.
  • MIRAEI ASHTIANI S.H., GOLZARIAN M.R., MOTIE J.B., EMADI B., JAMAL N. N., MOHAMMADINEZHAD H. 2016. Effect of loading position and storage duration on the textural properties of eggplant. International Journal of Food Properties. Vol. 19 p. 814–825. DOI 10.1080/10942912.2015.1045515.
  • MISHRA A., SINHA J.P., KAUKAB S., TOMAR B. 2019. Study of engineering properties of selected vegetable seeds. Indian Journal of Agricultural Sciences. Vol. 89 p. 1693–1697.
  • NASIRAHMADI A., ABBASPOUR-FARD M.H., EMADI B., KHAZAEI N.B. 2014. Modelling and analysis of compressive strength properties of parboiled paddy and milled rice. International Agrophysics. Vol. 28 p. 73–83. DOI 10.2478/intag-2013-0029.
  • PAIXÃO C.S., CHRISPIN C.P., SILVA R.P.D., GIRIO L.A., VOLTARELLI M.A. 2017. Physical and physiological quality of soybean seeds at three speeds of the harvester. Revista Brasileira de Engenharia Agricola e Ambiental. Vol. 21 p. 214–218. DOI 10.1590/1807-1929/agriambi.v21n3p214-218.
  • PANASIEWICZ K., FALIGOWSKA A., SZYMAŃSKA G., SZUKAŁA J., RATAJCZAK K., SULEWSKA H. 2020. The effect of various tillage systems on productivity of narrow-leaved lupin-winter wheat-winter triti-cale-winter barley rotation. Agronomy. Vol. 10(2), 304. DOI 10.3390/agronomy10020304.
  • PRUSINSKI J. 2017. White lupin (Lupinus albus L.) – Nutritional and health values in human nutrition – A review. Czech Journal of Food Sciences. Vol. 35 p. 95–105. DOI 10.17221/114/2016-CJFS.
  • RANDELOVIĆ P., ÐORDEVIĆ V., MILIĆ S., BALEŠEVIĆ-TUBIĆ S., PETROVIĆ K., MILADINOVIĆ J., ÐUKIĆ V. 2020. Prediction of soybean plant density using a machine learning model and vegetation indices extracted from RGB images taken with a UAV. Agronomy. Vol. 10, 1108. DOI 10.3390/agronomy10081108.
  • RAZARI M.A., EMADZADEH B., RAFE A., MOHAMMED A.A. 2007. Physical properties of pistachio nut and its kernel as a function of moisture content and variety. Geometric properties. Journal of Food Engineering. Vol. 81 p. 209–217. DOI 10.1016/j.jfoodeng.2006.11.003.
  • RIBEIRO A.B.M., BRUZI A.T., ZUFFO A.M., ZAMBIAZZI E.V., SOARES I.O., VILELA N.J.D., DE PEREIRA J.L.A., MOREIRA S.G. 2017. Productive performance of soybean cultivars grown in different plant densities. Ciência Rural. Vol. 47 p. 1–8. DOI 10.1590/0103-8478cr20160928.
  • ROCHE R., BANGE M. 2022. Effects of plant density, mepiquat chloride, early-season nitrogen and water applications on yield and crop maturity of ultra-narrow cotton. Agronomy. Vol. 12, 869. DOI 10.3390/agronomy12040869.
  • RYBIŃSKI W., BAŃDA M., BOCIANOWSKI J., BÖRNER A., STARZYCKI M., SZOT B. 2015. Estimation of mechanical properties of seeds of common vetch accessions (Vicia sativa L.) and their chemical composition. Genetic Resources and Crop Evolution. Vol. 62 p. 361–375. DOI 10.1007/s10722-014-0157-7.
  • RYBIŃSKI W., RUSINEK R., SZOT B., BOCIANOWSKI J., STARZYCKI M. 2014. Analysis of interspecies physicochemical variation of grain legume seeds. International Agrophysics. Vol. 28 p. 491–500. DOI 10.2478/intag-2014-0039.
  • RYBIŃSKI W., STARZYCKI M., RUSINEK R., BOCIANOWSKI J., SZOT B. 2013. Zmienność składu chemicznego nasion roślin strączkowych i ich odporności na obciążenia mechaniczne [Variation of legume seed’s chemical composition and resistance to mechanical damage]. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin. Nr 268 p. 193–209.
  • SHAHBAZI F., VALIZADE S., DOWLATSHAH A. 2017. Mechanical damage to green and red lentil seeds. Food Science and Nutrition. Vol. 5 p. 943–947. DOI 10.1002/fsn3.480.
  • SKOWERA B., JĘDRSZCZYK E., KOPCIŃSKA J., AMBROSZCZYK A.M., KOŁTUN A. 2014. The effects of hydrothermal conditions during vegetation period on fruit quality of processing tomatoes [online]. Polish Journal of Environmental Studies. Vol. 23(1) p. 195–202. [Access 10.04.2022]. Available at: https://tiny.pl/9v2zv
  • STEWART D.W., COSTA C., DWYER L.M., SMITH D.L., HAMILTON R.I., MA B. L. 2003. Canopy structure, light interception, and photosynthesis in maize. Agronomy Journal. Vol. 95 p. 1465–1474. DOI 10.2134/agronj2003.1465.
  • SZPUNAR-KROK E., KUŹNIAR P., PAWLAK R., MIGUT D. 2021. The effect of foliar fertilization on the resistance of pea (Pisum sativum L.) seeds to mechanical damage. Agronomy. Vol. 11, 189. DOI 10.3390/agronomy11010189.
  • WRBSR FAO 2014. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps [online]. World Soil Resources Reports. Vol. 106. Rome. Food and Agriculture Organization of the United Nations. ISBN 978-92-5-108370-3 pp. 203. [Access 25.05.2022]. Available at: https://www.fao.org/3/i3794en/I3794en.pdf
  • ZHIGUO L., PINGPINGI L., JIZHAN L. 2011. Physical and mechanical properties of tomato fruits as related to robot’s harvesting. Journal of Food Engineering. Vol. 103 p. 170–178. DOI 10.1016/j.jfoodeng.2010.10.013
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf82ace0-e179-489d-a80c-5fe9a6aa3666
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.