PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected Properties of Reinforcing Composite Bars for Concrete Elements Prepared from Waste Polyethylene Terephthalate (PET) Bottles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A concept of producing reinforcing bars for concrete elements from waste polyethylene terephthalate (PET) bottles is presented in the paper. The proposed technology of production harnesses strips of PET cut from bottles and thermal treatment. Finally, a sand-resin coating is applied to the composite bars. Produced bars can be differentiated by utilising different numbers of strips influencing the diameter of a bar. The key mechanical properties of the bars containing 3 to 8 strips were tested during the research program. Maximum loadings and displacements were established. Problems regarding the future application of the bars in question were discussed. Areas of need for further research were pointed out.
Słowa kluczowe
Rocznik
Tom
Strony
188--197
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
  • Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Poland
  • Stanisław Staszic State University of Applied Sciences in Piła, Poland
  • Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Poland
Bibliografia
  • ACI. 2012. 440.3R Guide Test Methods for Fiber-Reinforced Polymer (FRP) Composites for Reinforcing or Strengthening Concrete and Masonry Structures.
  • Ahdal, A.Q., Amrani, M.A., Ghaleb, A.A.A., Abadel, A.A., Alghamdi, H., Alamri, M., Wasim, M., Shameeri, M. (2022). Mechanical Performance and Feasibility Analysis of Green Concrete Prepared with Local Natural Zeolite and Waste PET Plastic Fibers as Cement Replacements. Case Studies in Construction Materials, 17, e01256. https://doi.org/10.1016/j.cscm.2022.e01256.
  • Alani, A.H., Johari, M.A.M., Noaman, A.T., Bunnori, N.M., Majid, T.A. (2022). Effect of the Incorporation of PET Fiber and Ternary Blended Binder on the Flexural and Tensile Behaviour of Ultra-High Performance Green Concrete. Construction and Building Materials, 331, 127306. https://doi.org/10.1016/j.conbuildmat.2022.127306.
  • Benavides, P.T., Dunn, J.B., Han, J., Biddy, M., Markham, J. (2018). Exploring Comparative Energy and Environmental Benefits of Virgin, Recycled, and Bio-Derived PET Bottles. ACS Sustainable Chemistry and Engineering, 6(8). https://doi.org/10.1021/acssuschemeng.8b00750.
  • Benyathiar, P., Kumar, P., Carpenter, G., Brace, J., Mishra, D.K. (2022). Polyethylene Terephthalate (PET) Bottle-to-Bottle Recycling for the Beverage Industry: A Review. Polymers, 14(12), 2366. https://doi.org/10.3390/polym14122366.
  • Borg, R.P., Baldacchino, O., Ferrara, L. (2016). Early Age Performance and Mechanical Characteristics of Recycled PET Fibre Reinforced Concrete. Construction and Building Materials, 108, 29-47. https://doi.org/10.1016/j.conbuildmat.2016.01.029.
  • Cai, W., Tremblay, L.A., An, L. (2022). Enhancing Consumption Responsibility to Address Global Plastic Pollution. Marine Pollution Bulletin, 183, 114089. https://doi.org/10.1016/J.MARPOLBUL.2022.114089.
  • Desta, E., Jun, Z. (2018). A Review on Ground Granulated Blast Slag GGBS in Concrete. 5-10. In: Kuala Lumpur, Malaysia: Institute of Research Engineers and Doctors.
  • DIN. 1976. 53479 Testing of Plastics and Elastomers; Determination of Density.
  • Foti, D. (2011). Preliminary Analysis of Concrete Reinforced with Waste Bottles PET Fibers. Construction and Building Materials, 25(4), 1906-15. https://doi.org/10.1016/j.conbuildmat.2010.11.066.
  • Geyer, R., Jambeck, J.R., Law, K.L. (2017). Production, Use, and Fate of All Plastics Ever Made. Science Advances 3(7). https://doi.org/10.1126/sciadv.1700782.
  • Gu, L., Ozbakkaloglu, T. (2016). Use of Recycled Plastics in Concrete: A Critical Review. Waste Management, 51, 19-42. https://doi.org/10.1016/J.WASMAN.2016.03.005.
  • Ho, H., Nguyen, H.C., Dinh, H.T., Ngo, D.Q., Le, D.D. (2023). Experimental Study on the Tensile Strength Degradation of Curved Alkali Resistant Glass and Carbon Textile as Concrete Reinforcement under Complex Loading. Case Studies in Construction Materials, 18, e01947. https://doi.org/10.1016/J.CSCM.2023.E01947.
  • Jayadurgalakshmi, M., Suganya, N., Udhaya Kumar T. (2023). A State-of-the-Art Review – Mechanical Properties of Light Weight Concrete by Utilising Sintered Fly Ash Aggregate. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2023.05.511.
  • Jeyanthi, J., Karthikeyan, U., Raj, M.M., Raj, M.K. (2023). Study of Concrete with Partial Replacement of Waste Foundry Sand for Fine Aggregate and Granite Waste for Coarse Aggregate. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2023.06.412.
  • Kadir, A.A., Hassan, M.I.H. (2014). An Overview of Fly Ash and Bottom Ash Replacement in Self Compaction Con-crete. 465-70. In: Key Engineering Materials. Vols. 594-595.
  • Katzer, J., Kobaka, J. (2009). Influence of Fine Aggregate Grading on Properties of Cement Composite. Silicates Industriels, 74(1-2).
  • Khalid A., Ismail Al-Hadithi, O.A., Tareq Noaman, A. (2022). Flexural Performance of Layered PET Fiber Reinforced Concrete Beams. Structures, 35, 55-67. https://doi.org/10.1016/J.ISTRUC.2021.11.007.
  • Kim, S.B., Yi, N.H., Kim, H.Y., Kim, Jang-Ho J., Song, Young-Chul. (2010). Material and Structural Performance Evaluation of Recycled PET Fiber Reinforced Concrete. Cement and Concrete Composites, 32(3), 232-40. https://doi.org/10.1016/j.cemconcomp.2009.11.002.
  • Kobaka, J. (2021). Principal Component Analysis as a Statistical Tool for Concrete Mix Design. Materials, 14(10), 2668. https://doi.org/10.3390/ma14102668.
  • Kocot, A., Ćwirzeń, A., Ponikiewski, T., Katzer, J. (2021). Strength Characteristics of Alkali-Activated Slag Mortars with the Addition of Pet Flakes. Materials, 14(21). https://doi.org/10.3390/ma14216274.
  • Lehner, P., Horňáková, M., Pizoń, J., Gołaszewski, J. (2022). Effect of Chemical Admixtures on Mechanical and Degradation Properties of Metallurgical Sludge Waste Concrete. Materials, 15(23), 8287. https://doi.org/10.3390/ma15238287.
  • Mohammed, A.A., Karim, S.H. (2023). Impact Strength and Mechanical Properties of High Strength Concrete Containing PET Waste Fiber. Journal of Building Engineering, 68, 106195. https://doi.org/10.1016/J.JOBE.2023.106195.
  • Mustafa Abdullah, Q., Haido, J.H. (2022). Response of Hybrid Concrete Incorporating Eco-Friendly Waste PET Fiber: Experimental and Analytical Investigations. Construction and Building Materials, 354, 129071. https://doi.org/10.1016/J.CONBUILDMAT.2022.129071.
  • Pereira, E.L., de Oliveira Junior, A.L., Fineza, A.G. 2017. Optimisation of Mechanical Properties in Concrete Rein-forced with Fibers from Solid Urban Wastes (PET Bottles) for the Production of Ecological Concrete. Construction and Building Materials, 149. https://doi.org/10.1016/j.conbuildmat.2017.05.148.
  • Rumman, R., Bari, M.S., Manzur, T., Kamal, M.R., Noor, M.A. (2020). A Durable Concrete Mix Design Approach Using Combined Aggregate Gradation Bands and Rice Husk Ash Based Blended Cement. Journal of Building Engineering, 30. https://doi.org/10.1016/j.jobe.2020.101303.
  • Salazar, C., Jaime, M., Leiva, M., González, N. (2022). From Theory to Action: Explaining the Process of Knowledge Attitudes and Practices Regarding the Use and Disposal of Plastic among School Children. Journal of Environmental Psychology, 80. https://doi.org/10.1016/j.jenvp.2022.101777.
  • Salhotra, S., Khitoliya, R.K. Kumar Arora, S. (2022). Assessing the Enhanced Concrete-Properties Induced by Sugarcane Bagasse Ash-Coated PET-Fibers. Materials Today: Proceedings, 48, 994-1000. https://doi.org/10.1016/j.matpr.2021.06.319.
  • Salhotra, S., Khitoliya, R.K., Kumar, S. (2021). Comparative Study of Uncoated and Coated Waste PET Fiber for Sustainable Concrete. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.06.060.
  • Sharma, R., Bansal, P.P. (2016). Use of Different Forms of Waste Plastic in Concrete – a Review. Journal of Cleaner Production, 112, 473-82. https://doi.org/10.1016/J.JCLEPRO.2015.08.042.
  • Silva, D.A., Betioli, A.M., Gleize, P.J.P., Roman, H.R., Gómez, L.A., Ribeiro, J.L.D. (2005). Degradation of Recycled PET Fibers in Portland Cement-Based Materials. Cement and Concrete Research, 35(9). https://doi.org/10.1016/j.cemconres.2004.10.040.
  • Thomas, L.M., Moosvi, S.A. (2020). Hardened Properties of Binary Cement Concrete with Recycled PET Bottle Fiber: An Experimental Study. Materials Today: Proceedings, 32, 632-37. https://doi.org/10.1016/j.matpr.2020.03.025.
  • Valentin, A.P.M., Hechanova, M.R.M. (2023). Addressing Plastic Pollution through Green Consumption: Predicting Intentions to Use Menstrual Cups in the Philippines. Journal of Retailing and Consumer Services, 71, 103204. https://doi.org/10.1016/J.JRETCONSER.2022.103204.
  • Walker, T.R. (2022). Calling for a Decision to Launch Negotiations on a New Global Agreement on Plastic Pollution at UNEA5.2. Marine Pollution Bulletin, 176, 113447. https://doi.org/10.1016/J.MARPOLBUL.2022.113447.
  • Wang, F., Meng, F., Feng, T., Wang, Y., Jiang, J., Shi, J. (2023). Effect of Stone Powder Content on the Mechanical Properties and Microstructure of Tunnel Slag Aggregate-Based Concrete. Construction and Building Materials, 388, 131692. https://doi.org/10.1016/J.CONBUILDMAT.2023.131692.
  • Wang, S. (2023). International Law-Making Process of Combating Plastic Pollution: Status Quo, Debates and Prospects. Marine Policy, 147, 105376. https://doi.org/10.1016/J.MARPOL.2022.105376.
  • Wang, Y, Huang, H., Zeng, J., Hu, W., Cheng, Y. (2023). Axial Compressive Behavior of Recycled Ceramic Coarse Aggregate Concrete-Filled Steel Tubular Columns. Journal of Constructional Steel Research, 210, 108040. https://doi.org/10.1016/J.JCSR.2023.108040.
  • Wiliński, D., Łukowski, P., Rokicki, G. (2016). Application of Fibres from Recycled PET Bottles for Concrete Reinforcement. J. Build. Chem, 1.
  • Zhu, L., Wen, T., Tian, L. (2022). Size Effects in Compressive and Splitting Tensile Strengths of Polypropylene Fiber Recycled Aggregate Concrete. Construction and Building Materials, 341, 127878. https://doi.org/10.1016/J.CONBUILDMAT.2022.127878.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf7e2203-06b7-4d84-bffa-c3f240614cc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.