PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distillery wastewater decolorization by Lactobacillus plantarum MiLAB393

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Dekoloryzacja wywaru gorzelniczego przez Lactobacillus plantarum MiLAB393
Języki publikacji
EN
Abstrakty
EN
Sugar beet molasses vinasse is a high-strength distillery wastewater. It contains colored substances which significantly affect the degree of pollution and toxicity of vinasse. This study aimed to optimize the medium composition and the process condition of sugar beet molasses vinasse decolorization by Lactobacillus plantarum MiLAB393. The research was conducted in two stages: the shake-flask stage in the 250 cm3 Erlenmeyer flasks and the batch experiments in the 5 dm3 working volume stirred-tank bioreactor. During the study, the concentrations of glucose and yeast extract were optimized using experimental design of experiments (DOE). The influences of the initial value of pH and pH control, temperature, stirrer speed and glucose concentration on decolorization were tested. The highest color reduction of 24.1% was achieved for an experiment in which 24.93 g/dm3 of glucose was added to the medium and stirrer speed was 200 rpm. This efficiency of 30% v/v sugar beet molasses vinasse decolorization was obtained at non-controlled pH 6.0 and at 35.8°C. It was found that pH control determines vinasse decolorization. When the pH was controlled, decolorization did not exceed 9%. The glucose and yeast extract concentration and the stirrer speed have a great influence on the process. Changes in these parameters may increase biomass growth while decreasing the decolorization.
PL
Buraczany wywar melasowy to gorzelniany produkt uboczny charakteryzujący się wysokim ładunkiem zanieczyszczeń. Zawiera substancje barwne, które znacząco wpływają na jego toksyczność i stopień zanieczyszczenia. Celem pracy było zoptymalizowanie składu podłoża i parametrów procesu dekoloryzacji buraczanego wywaru melasowego przez Lactobacillus plantarum MiLAB393. Badania przeprowadzono w dwóch etapach: w hodowli wytrząsanej w kolbach Erlenmeyera o pojemności 250 cm3 oraz w eksperymentach okresowych w bioreaktorze o pojemności roboczej 5 dm3, z mieszaniem. Badania przeprowadzono z wykorzystaniem metody planowania eksperymentu (DOE), dzięki której zoptymalizowano stężenia glukozy i ekstraktu drożdżowego. Badano również wpływ regulacji i początkowej wartości pH oraz wpływ temperatury, prędkości mieszania i stężenia glukozy na stopień usunięcia związków barwnych. Największą redukcję barwy uzyskano dla doświadczenia, w którym do pożywki dodano 24,93 g/dm3 glukozy, a szybkość mieszadła wynosiła 200 obrotów na minutę. 24,1% stopień dekoloryzacji 30% v/v buraczanego wywaru melasowego otrzymano przy nieregulowanym pH równym 6,0 i temperaturze 35,8°C. Stwierdzono, że regulacja pH determinuje proces odbarwiania wywaru. Gdy pH było regulowane, dekoloryzacja nie przekraczała 9%. Stężenie glukozy i ekstraktu drożdżowego oraz prędkość mieszania mają duży wpływ na proces. Zmiany tych parametrów mogą zwiększać wzrost biomasy przy jednoczesnym zmniejszeniu odbarwienia.
Rocznik
Strony
76--84
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • Wroclaw University of Economics
  • Wroclaw University of Economics
Bibliografia
  • 1. Agarwal, R., Lata, S., Gupta, M. & Singh, P. (2010). Removal of melanoidin present in distillery effluent as a major colorant: a review, Journal of Environmental Biology, 31, 4, pp. 521-528.
  • 2. Agnihotri, S. (2015). Decolorization study on synthetic colorants by using spore inoculum of Aspergillus oryzae JSA-1, International Journal of Current Microbiology and Applied Sciences, 4, 10, pp. 12-17.
  • 3. Arimi, M.M., Zhang, Y., Götz, G., Kiriamiti, K. & Geißen, S. (2014). Antimicrobial colorants in molasses distillery wastewater and their removal technologies, International Biodeterioration & Biodegradation, 87, pp. 34-43, DOI: 10.1016/j.ibiod.2013.11.002.
  • 4. Boopathy, M.A. & Senthilkumar, S.N.S. (2014). Media optimization for the decolorization of distillery spent wash by biological treatment using Pseudomonas fluorescence, International Journal of Innovations in Engineering and Technology, 4, 1, pp. 8-15.
  • 5. Chandra, R., Bharagava, R.N. & Rai, V. (2008). Melanoidins as major colourant in sugarcane molasses based distillery effluent and its degradation, Bioresource Technology, 99, 11, pp. 4648-4660, DOI: 10.1016/j.biortech.2007.09.057.
  • 6. Chowdhary, P., Raj, A. & Bharagava, R.N. (2018). Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: A review, Chemosphere, 194, pp. 229-246, DOI: 10.1016/j.chemosphere.2017.11.163.
  • 7. España-Gamboa, E., Vicent, T., Font, X., Mijangos-Cortés, J., Canto-Canche, B. & Alzate-Gaviria, L. (2015). Phenol and color removal in hydrous ethanol vinasse in an air - pulsed bioreactor using Trametes versicolor, Journal of Biochemical Technology, 6, 3, pp. 982-986.
  • 8. Ghosh, M., Ganguli, A. & Tripathi, K.A. (2002). Treatment of anaerobically digested distillery spentwash in a two-stage bioreactor using Pseudomonas putida and Aeromonas sp, Process Biochemistry, 37, 8, pp. 857-862, DOI: 10.1016/S0032-9592(01)00281-3.
  • 9. Gupta, M., Mishra, P.K., Kumar, A. & Tiwari, S. (2011). Decolorization of molasses melanoidin by Candida Sp, Indian Journal of Applied and Pure Biology, 26, 2, pp. 199-204.
  • 10. Kaushik, G. & Thakur, I.S. (2009). Isolation and characterization of distillery spent wash color reducing bacteria and process optimization by Taguchi approach, International Biodeterioration and Biodegradation, 63, 4, pp. 420-426, DOI: 10.1016/j.ibiod.2008.11.007.
  • 11. Krzywonos, M., Chałupniak, A. & Zabochnicka-Świątek, M. (2017) Decolorization of beet molasses vinasse by Bacillus megaterium ATCC 14581, Bioremediation Journal, 21, 2, pp. 81-88, DOI: 10.1080/10889868.2017.1312263.
  • 12. Krzywonos, M., Seruga, P., Wilk, M., Borowiak, D. & Stelmach, K. (2016) Separation of colorants in sugar beet vinasse using gel chromatography, Acta Scientiarum Polonorum Biotechnologia, 15, 1, pp. 15-26. (in Polish)
  • 13. Limkhuansuwan, V. & Chaiprasert, P. (2010). Decolorization of molasses melanoidins and palm oil mill effluent phenolic compounds by fermentative lactic acid bacteria, Journal of Environmental Sciences, 22, 8, pp. 1209-1217, DOI: 10.1016/S1001-0742(09)60240-0.
  • 14. Mahgoub, S., Tsioptsias, C. & Samaras, P. (2016). Biodegradation and decolorization of melanoidin solutions by manganese peroxidase yeasts, Water Science and Technology, 73, 10, pp. 2436-2445, DOI: 10.2166/wst.2016.101.
  • 15. Ravikumar, R., Vasanthi, N.S. & Saravanan, K. (2013). Biodegradation and decolorization of distillery spent wash with product release by a novel strain Cladosporium cladosporioides: optimization and biokinetics, Chemical and Biochemical Engineering, 27, 3, pp. 373-383.
  • 16. Ryznar-Luty, A., Cibis, E., Krzywonos, M. & Miśkiewicz T. (2015). Efficiency of aerobic biodegradation of beet molasses vinasse under non-controlled pH: conditions for betaine removal, Archives of Environmental Protection, 41, 1, pp. 3-14, DOI: 10.1515/aep-2015-0001.
  • 17. Santal, A.R., Singh, N.P. & Saharan, B.S. (2016). A novel application of Paracoccus pantotrophus for the decolorization of melanoidins from distillery effluent under static conditions, Journal of Environmental Management, 169, pp. 78-83, DOI:10.1016/j.jenvman.2015.12.016.
  • 18. Santal, A.S., Singh, N.P. & Saharan, B.S. (2011). Biodegradation and detoxification of melanoidin from distillery effluent using an aerobic bacterial strain SAG5 of Alcaligenes faecalis, Journal of Hazardous Materials, 193, pp. 319-324, DOI: 10.1016/j.jhazmat.2011.07.068.
  • 19. Sapronov, A.R. (1963). Quantitative determination of colourants in the sugar industry products, Sacharnaja Prom. SSSR, 37, pp. 32-35. (in Russian)
  • 20. Seruga, P. & Krzywonos, M. (2015) Screening of medium components and process parameters for sugar beet molasses vinasse decolorization by Lactobacillus Plantarum using Plackett-Burman experimental design, Polish Journal of Environmental Studies, 24, 2, pp. 683-688, DOI: 10.15244/pjoes/24931.
  • 21. Shukla, A.K., Tripathi, A. & Mishra, P.K. (2014). Fungal decolorization of anaerobically biodigested distillery effluent (ABDE) following coagulant pretreatment, International Journal of Science and Environmental Technology, 3, 2, pp. 723-734.
  • 22. Sridevi, V., Lakshmi, M.V.V.C., Swamy, A.V.N. & Rao, M.N. (2011) Implementation of response surface methodology for phenol degradation using Pseudomonas putida (NCIM 2102), Journal of Bioremediation and Biodegradation, 2, 2, pp. 121, DOI: 10.4172/2155-6199.1000121.
  • 23. Szoege, H.M. & Wiśniewski, M. (2013). Economic and ecological aspects of ethanol production in small agricultural distilleries, Inżynieria Rolnicza, 2, 143, pp. 215-224. (in Polish)
  • 24. Tiwari, S. & Gaur, R. (2014). Decolorization of distillery spentwash (melanoidin) by immobilized consortium (bacterium and yeast) cell: entrapped into sodium alginate bead, Journal of Environmental Sciences and Technology, 7, 3, pp. 137-153, DOI: 10.3923/jest.2014.
  • 25. Tiwari, S., Gaur, R., Rai, P. & Tripathi, A. (2012). Decolorization of distillery effluent by thermotolerant Bacillus subtilis, American Journal of Applied Sciences, 9, 6, pp. 798-806, DOI: 10.3844/ajassp.2012.798.806.
  • 26. Tiwari, S., Gaur, R. & Singhm, A. (2014). Distillery spentwash decolorization by a noval consortium of Pediococcus acidilactici and Candida tropicalis under static condition, Pakistan Journal of Biological Science, 17, 6, pp. 780-791, DOI: 10.3923/pjbs.2014.780.791.
  • 27. Tondee, T. & Sirianuntapiboon, S. (2008). Decolorization of molasses wastewater by Lactobacillus plantarum No. PV71-1861, Bioresource Technology, 99, 14, pp. 6258-6265, DOI: 10.1016/j.biortech.2007.12.028.
  • 28. Wilk, M., Krzywonos, M., Borowiak, D. & Seruga, P. (2015) Effect of nitrogen, phosphorus and carbon sources addition to vinasse on the colourants removal with Lactobacillus plantarum MILAB393, Acta Scientiarum Polonorum Biotechnologia, 14, 3, pp. 23-36. (in Polish)
  • 29. Wilk, M., Krzywonos, M. & Seruga, P. (2017) Microbiological colourants removal from sugar beet molasses vinasse - the effects of process parameters and vinasse dilution, Economic and Environmental Studies, 17, 2, pp. 335-345, DOI: 10.25167/ees.2017.42.11.
  • 30. Wilk, M., Krzywonos, M., Seruga, P. & Walaszczyk, E. (2019) Effect of pH and temperature on vinasse decolorization by lactic acid bacteria in batch processes, Water Environment Research, 91, 7, pp. 573-580, DOI:10.1002/wer.1065.
  • 31. Yadav, S. & Chandra, R. (2012). Biodegradation of organic compounds of molasses melanoidin (MM) from biomethanated distillery spent wash (BMDS) during the decolourisation by a potential bacterial consortium, Biodegradation, 23, 4, pp. 609-620, DOI: 10.1007/s10532-012-9537-x.
  • 32. Zuraida, S.M., Nurhaslina, R.C. & Ku, H.K. (2013). Influence of agitation, pH and temperature on growth and decolorization of batik wastewater by bacteria Lactobacillus delbruckii, International Journal of Research and Revies in Applied Sciences, 14, 2, pp. 269-275.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf7d70f8-9cdd-4855-91f8-3113f035f3f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.