Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Stokes axisymmetric flow of an incompressible micropolar fluid past an another immiscible micropolar fluid sphere is studied analytically under small Reynolds numbers. A spherical coordinate system is used to solve the Stokes equations for the fluid velocities, pressures and microrotation vectors inside and outside the micropolar fluid drop. The boundary conditions on the micropolar fluid drop surface are satisfied by vanishing of a normal component of velocity inside and outside the micropolar fluid sphere, tangential components of velocities are continuous, tangential components of stresses are continuous, and the microrotation vector inside and outside the micropolar fluid sphere vanishes. Numerical results for the drag force acting on the micropolar fluid drop are obtained for various values of the relative viscosity of the fluid drop, micropolar parameters (vortex viscosity parameters), and shear spin viscosity parameters. It is found that the drag force exerted on the viscous drop in a micropolar fluid and the micropolar fluid drop in a viscous fluid increase with an increase in the viscosity ratio. Additionally, the findings demonstrate that the drag force acting on the micropolar drop in a micropolar fluid increases as the viscosity ratio increases, and the drag force on the gaseous bubble is less than that of a solid sphere. Well-known results are reduced, and comparisons are made with a classical viscous-viscous droplet, a micropolar-viscous droplet and a viscous-micropolar droplet. The present study has significant applications in natural, biological, and industrial processes, such as sedimentation phenomena, liquid-liquid extraction, the study of blood flow, and the rheology of emulsions.
Rocznik
Tom
Strony
54--65
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Department of Mathematics, National Institute of Technology, Raipur-492010 Chhattisgarh, India madaspra.maths@nitrr.ac.in
autor
- Department of Mathematics, National Institute of Technology, Raipur-492010 Chhattisgarh, India kpm973@gmail.com, goyalnidhi.1408@gmail.com
Bibliografia
- 1. Hadamard, J.S. (1911). M’ecanique-mouvement permanent lent d’une sph‘ere liquide et visqueuse dansun liquide visqueux. CR Acad. Sci., 152, 1735-1738.
- 2. Rybczynski, W. (1911). On the translatory motion of a fluid sphere in a viscous medium. Bull. Acad. Sci. Cracovie. Ser. A, 40, 40-46
- 3. Eringen, A.C. (2001). Microcontinuum Field Theories II: Fluent Media. New York: Springer.
- 4. Rao, S.K.L., & Rao, P.B. (1970). The slow stationary flow of a micropolar liquid past a sphere. Journal of Engineering Mathemathics, 4, 209-217.
- 5. Ramkissoon, H., & Majumdar, S.R. (1976). Drag on axially symmetric body in the Stokes flow of micropolar fluid. Physics of Fluids, 19, 16-21.
- 6. Niefer, R., & Kaloni, P.N. (1980). On the motion of a micropolar fluid drop in a viscous fluid. Journal of Engineering Mathematics, 14, 107-116.
- 7. Ramkissoon, H. (1985). Flow of a micropolar fluid past a Newtonian fluid sphere. ZAMM – Journal of Applied Mathematics and Mechanics, 65, 635-637.
- 8. Saad, E.I. (2012). Cell models for micropolar flow past a viscous fluid sphere. Meccanica, 47, 2055-2068.
- 9. Faltas, M.S., & Saad, E.I. (2014). Slow motion of spherical droplet in a micropolar fluid flow perpendicular to a planar solid surface. European Journal of Mechanics – B/Fluids, 48, 266-276.
- 10. Ramkissoon, H., & Majumdar, S.R. (1988). Micropolar flow past a slightly deformed fluid sphere. ZAMM – Journal of Applied Mathematics and Mechanics, 68, 155-160.
- 11. Madasu, K.P., & Kaur, M. (2016). Stokes flow of micropolar fluid past a viscous fluid spheroid with non-zero boundary condition for microrotation. Sadhan ¯ a¯, 41, 1463-1472.
- 12. Madasu, K.P., & Kaur, M. (2017). Stokes flow of viscous fluid past a micropolar fluid spheroid. Advances in Applied Mathematics and Mechanics, 9(5), 1076-1093.
- 13. Gomathy, G., Sabarmathi, A., & Shukla, P. (2020). Creeping flow of non-Newtonian fluid past a fluid sphere with non-zero spin boundary condition. Advances in Mathematics: Scientific Journal, 9, 5979-5986
- 14. Srinivasacharya, D., & Rajyalakshmi, I. (2004). Creeping flow of micropolar fluid past a porous sphere. Applied Mathematics and Computation, 153, 843-854.
- 15. Khanukaeva, D. (2020). Filtration of micropolar liquid through a membrane composed of spherical cells with porous layer. Theoretical Computational Fluid Dynamics, 34, 215-229.
- 16. Yadav, P.K., Jaiswal, S., Puchakatla, J.Y., & Filippov, A.N. (2020). Poiseuille flow of micropolar- -Newtonian fluid through concentric pipes filled with porous medium. Colloid Journal, 82, 333-341.
- 17. Selvi, R., Shukla, P., & Filippov, A.N. (2020). Flow around a liquid sphere filled with a non Newtonian liquid and placed into a porous medium. Colloid Journal, 82, 152-1
- 18. El-Sapa, S. (2021). Effect of magnetic field on a microstretch fluid drop embedded in an unbounded another microstretch fluid. European Journal of Mechanics – B/Fluids, 85, 169-180
- 19. El-Sapa, S. (2022). Cell models for micropolar fluid past a porous micropolar fluid sphere with stress jump condition. Physics of Fluids, 34, 082014.
- 20. Yadav, P.K., Kumar, A., & Filippov, A.N. (2023). Analysis of entropy production of immiscible micropolar and Newtonian fluids flow through a channel: Effect of thermal radiation and magnetic field. Colloid Journal, 85, 95-113.
- 21. Happel, J., & Brenner, H. (2012). Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media. Springer Science & Business Media.
- 22. Salem, A.G., Faltas, M.S., & Sherief, H.H. (2022). Migration of nondeformable droplets in a circular tube filled with micropolar fluids. Chinese Journal of Physics, 79, 287-305.
- 23. Salem, A.G. (2023). Effects of a spherical slip cavity filled with micropolar fluid on a spherical viscous droplet. Chinese Journal of Physics, 86, 98-114.
- 24. Salem, A.G. (2023). Effects of a spherical slip cavity filled with micropolar fluid on a spherical micropolar droplet. Fluid Dynamics Research, 55(6), 065502.
- 25. Alharbi, A.H., & Salem, A.G. (2024). Analytical and numerical investigation of viscous fluid-filled spherical slip cavity in a spherical micropolar droplet. AIMS Mathematics, 9(6), 15097- -15118.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf7bf6ea-90f2-4cf5-bdfc-69487b0ab1dc