PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational study of the impact of chosen geometry parameters on stability of recirculation zone in GTD-350 gas turbine combustor

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to evaluate the impact of modifications of selected geometric parameters on the formation of the main recirculation zone in the combustion chamber of GTD-350 turbine engine. Changes were evaluated based mainly on the swirl number as a non-dimensional criterion to characterize the amount of rotation imparted to the axial flow. Geometric modifications include the changes in the angle of swirler vanes, as well as the changes in the position of holes along an axis of the chamber and its diameter. Moreover, a special modification which would cause an additional angular momentum of air flowing through the hole inlets on the outer side of the combustor liner has been proposed. This modification will improve the mixing process in the primary zone and may reduce the temperature pulsation of exhaust gas. The study presents 3-D numerical simulations of aerodynamic flow inside a GTD-350 turbine engine combustion chamber. The process of generating a numerical grid, determining boundary conditions and their properties are also described.
Słowa kluczowe
Rocznik
Strony
101--116
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology Institute of Heat Engineering, Nowowiejska 21/25, 00 - 665 Warsaw, Poland
Bibliografia
  • [1] Lefebvre A. H., Gas Turbine Combustion, Taylor & Francis Group, 1999.
  • [2] Lefebvre, A. H., Atomization and sprays, Hemisphere Publishing Corporation, 1989.
  • [3] Lee H. S. and Yoon J. J., The Study on Development of Low NOx Combustor with Lean Burn Characteristics for 20kW class Microturbine. Proceedings of ASME Turbo Expo, 14--17 June, Viena, Austria, 2004.
  • [4] Bulysova L.A., Vasil’ev V.D., Gutnik M.N., Gutnik M.M., Ermolaev V.V., Rusetskii Yu.A., Study of a Burner Module of a Low-Emission Combustion Chamber of the GTE-45 Gas Turbine Unit, Pleiades Publishing, Inc., pp. 293–298, 2009.
  • [5] Gurrappa I. and Rao A. S, Thermal barrier coatings for enhanced efficiency of gas turbine engines, Surface and Coatings Technology. Volume 201, pages 3016--3029, 2006.
  • [6] Łapucha R., Komory spalania silników turbinowo-odrzutowych, Biblioteka Naukowa Instytutu Lotnictwa, Warszawa, 2004.
  • [7] Gieras M., Komory spalania silników turbinowych – organizacja procesów spalania”, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2010.
  • [8] Zelenay K., Pintara J., Rozmus K., Moszkowicz E., Witek T., Jaworski M., Próby hamowniane pierwszego prototypu silnika K-15. Sprawozdanie Instytutu Lotnictwa, Nr K15.12.60, Warszawa, 1998.
  • [9] Lefevbre A. H., Airblast atomization. Progress in Energy Combustion Science. Vol. 6, pp. 233--261. 1980.
  • [10] Chin J. S., Atomization study in Jet Propulsion Lab. BIAA survey report. International Journal of Turbo and Jet-Engines. Vol. 6, No. 3--4, pp. 205--219, 1989.
  • [11] Adachia S., Iwamotoa A., Hayashib S., Yamadab H. and Kaneko S., Emissions in combustion of lean methane-air and biomass-air mixtures supported by primary hot burned gas in a multi-stage gas turbine combustor. Proceedings of the Combustion Institute. Vol. 31, pp. 3131--3138, 2007.
  • [12] Kwark J-H et. Al.: Effect of Swirl Intensity on the Flow and Combustion of a Turbulent Non-Premixed Flat Flame, Flow, Turbulence and Combustion 73, pp. 231–257, 2004.
  • [13] Tangirala, V., Chen, R.H. and Driscoll, J.F., Effect of Heat Release and Swirl on the recirculation within Swirl-Stabilized Flames, Combustion Science and Technology, Vol. 51, pp.75-95, 1987.
  • [14] Boudier G., Gicquel L. Y. M., Poinsot T., Bissieres D. and Berat C., Comparison of {les}, {rans} and experiments in an aeronautical gas turbine combustion chamber. Proceedings of the Combustion Institute. Vol. 31, pp. 3075--3082, 2007.
  • [15] Colin O. and Benkenida A., The 3-Zones Extended Coherent Flame Model (ECFM3Z) for Computing Premixed/Diffusion Combustion, Oil & Gas, Science and Technology, Vol. 59, No. 6, pp. 593-609, 2004
  • [16] Colin O., Pires da Cruz A., Jay S., Detailed chemistry-based auto-ignition model including low temperature phenomena applied to 3-D engine calculations, Proceedings of the Combustion Institute 30, pp. 2649–2656, 2005.
  • [17] Widenhorn A., Noll B., Aigner M., High Performance Computing in Science and Engineering ’08 – Numerical Characterization of the Reacting Flow in a Swirled Gasturbine Model Combustor, Institut fur Verbrennungstechnik der Luft und Raumfahrt, Universitat Stuttgart, pp.265-280, 2009.
  • [18] Gonzalez Toro C. A., Wong K.C., Armfield S., Computational study of a micro-turbine engine combustor using Large Eddy Simulation and Reynolds Averaged turbulence models, ANZIAM Journal, Vol 49, pp.1148- 1156, 2007.
  • [19] Schildmacher K.. U., Hoffmann A. Selle L., Koch R., Schulz C., Bauer H. H., Poinsot T., Krebs W. and Prade B., Unsteady flame and flow field interaction of a premixed model gas turbine burner. Proceedings of the Combustion Institute, Vol. 31, No 2, pp. 3197--3205, 2007.
  • [20] James S., Zhu J. and Anand M. S. Large-Eddy Simulations as a Design Tool for Gas Turbine Combustion Systems. AIAA JOURNAL. Vol. 44, No. 4, pp. 674-686, 2006.
  • [21] Wegner B., Kempf A., Schneider C., Sadiki A., Schafer M., Large eddy simulation of combustion processes under gas turbine conditions – Progress in Computational Fluid Dynamic, An Int. J. Vol.4, No3/4/5, pp. 257-263, 2004.
  • [22] Gieras M. and Stańkowski T., Computational study of an aerodynamic flow through a micro-turbine engine combustor, Journal of Power Technologies, 92 (2), pp. 68–79, 2012.
  • [23] Gieras M., Computational study of an aerodynamic flow through a turbine engine combustor, Archivum Combustionis, Vol. 33, No. 1, pp.27-40, 2013.
  • [24] Gieras M., Computational study of a combustion process in a turbine engine combustor, Archivum Combustionis, Vol. 33, No. 1, pp.11-26, 2013.
  • [25] User Guide, Tutorial Guide, Ansys Inc., 2012.
  • [26] http://www.rolls-royce.com.
  • [27] Wytwórnia Sprzętu Komunikacyjnego „PZL-Rzeszów” S.A, Instrukcja eksploatacji i obsługi technicznej silnika GTD-350, Rzeszów, 1975.
  • [28] http://www.symscape.com/polyhedral-tetrahedral-hexahedral-mesh-comparison
  • [29] Beer, J. Μ., and Chigier, Ν. Α., Combustion Aerodynamics, Applied Science, London, 1972.
  • [30] Orkisz M., Turbinowe silniki lotnicze w ujęciu problemowym. PN – TTE, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf7ae0e6-7d81-4fc3-89fe-4dc88a476b8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.