PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Impact of hydrofoil shaped imperfections on lift and drag characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper examines the impact of production imperfections on the lift and drag characteristics of hydrofoils, in order to ensure equal opportunities for racing athletes. To achieve this research objective, 18 regatta class approved hydrofoils underwent 3D scanning. Measurements of the sweep, anhedral, and angle of attack for each section were conducted based on the scans. Simple load tests were also employed to assess the deformation of the foil under working conditions. Using the data obtained from these measurements, we developed a simplified parametric model of the foil. Subsequently, CFD simulations were conducted for selected parameter ranges, in order to determine the lift and drag of the hydrofoil. The research revealed variations among the foils, with some significantly affecting the lift characteristics. Of these, variations in the angle of attack had the greatest influence on lift.
Rocznik
Tom
Strony
29--37
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Institute of Naval Architecture, Gdansk, Poland
  • Gdansk University of Technology, Institute of Naval Architecture, Gdansk, Poland
  • Gdansk University of Technology, Institute of Naval Architecture, Gdansk, Poland
Bibliografia
  • 1. Sacher M, Durand M, Berrini É, Hauville F, Duvigneau R, Le Maître O, Astolfi JFlexible hydrofoil optimisation for the 35th America’s Cup with constrained EGO method. Ocean Engineering 2018;157:62–72. https://doi.org/10.1016/J.OCEANENG.2018.03.047.
  • 2. Kostas KV, Ginnis AI, Politis CG, Kaklis PD. Shapeoptimisation of 2D hydrofoils using an Isogeometric BEM solver. Computer-Aided Design 2017;82:79–87. https://doi.org/10.1016/J.CAD.2016.07.002.
  • 3. Ploé P. Surrogate-based optimisation of hydrofoil shapes using RANS simulations. École centrale de Nantes, 2018.
  • 4. Balze R, Bigi N, Roncin K, Leroux J-B, Neme A, Keryvin V, Astolfi J. An innovative tool to study and optimise racing yacht appendages using fluid structure interactions. II International Conference on Computational Methods in Marine Engineering 2017:616–24. https://doi.org/10.34894/VQ1DJA.
  • 5. Melis MF, Hansen H, Fischer M, Abdel-Maksou M. Velocity Prediction Program for a Hydrofoiling Lake Racer. SNAME 24th Chesapeake Sailing Yacht Symposium, CSYS 2022 2022. https://doi.org/10.5957/CSYS-2022-011.
  • 6. Kerdraon P, Horel B, Bot P, Letourneur A, Le Touzé D. Development of a 6-DOF Dynamic Velocity Prediction Program for offshore racing yachts. Ocean Engineering 2020;212:107668. https://doi.org/10.1016/J.OCEANENG.2020.107668.
  • 7. Maung PT, Prusty BG, Donough MJ, Oromiehie E, Phillips AW, St John NA. Automated manufacture of optimised shape-adaptive composite hydrofoils with curvilinear fibre paths for improved bend-twist performance. Marine Structures 2023;87:103327. https://doi.org/10.1016/J.MARSTRUC.2022.103327.
  • 8. Herath MT, Phillips AW, St John N, Brandner P, Pearce B, Prusty G. Hydrodynamic response of a passive shape-adaptive composite hydrofoil. Marine Structures 2021;80:103084. https://doi.org/10.1016/J.MARSTRUC.2021.103084.
  • 9. Hu J, Ning X, Sun S, Li F, Ma J, Zhang W. Fluid-structure coupled analysis of flow-induced vibrations in three dimensional elastic hydrofoils. Marine Structures 2022;84:103220. https://doi.org/10.1016/J.MARSTRUC.2022.103220.
  • 10. Marimon Giovannetti L, Banks J, Ledri M, Turnock SR, Boyd SW. Toward the development of a hydrofoil tailored to passively reduce its lift response to fluid load. Ocean Engineering 2018;167:1–10. https://doi.org/10.1016/J.OCEANENG.2018.08.018.
  • 11. Faye A, Perali P, Augier B, Sacher M, Leroux J-B, Neme A, Astolfi J. Fluid-Structure Interactions Response of a Composite Hydrofoil Modelled With 1D Beam Finite Elements. Journal of Sailing Technology 2024;9:19–41. https://doi.org/10.5957/JST/2024.9.1.19.
  • 12. Li F, Yu P, Wang Q, Li G, Wu X. Numerical Analysis of the Effect of Flexibility on the Propulsive Performance of a Heaving Hydrofoil Undergoing Sinusoidal and Non-Sinusoidal Motions. Polish Maritime Research 2021;28:4–19. https://doi.org/10.2478/POMR-2021-0045.
  • 13. Pruszko H. Hydroelastic properties of the sailing fin – influence of the stiffness distribution on the hydrodynamic forces. Gdańsk University of Technology, 2024.
  • 14. Cardoso de Brito M, Sutherland LS, Pereira JMC, Arruda MR. Fluid-Structure Interaction Analyses for Hydro-Elastic Tailoring of a Windsurfer Fin. Journal of Marine Science and Engineering 2022;10:1371. https://doi.org/10.3390/JMSE10101371.
  • 15. Knudsen SS, Walther JH, Legarth BN, Shao Y. Towards the Dynamic Velocity Prediction of a NACRA 17. SNAME 24th Chesapeake Sailing Yacht Symposium, CSYS 2022 2022. https://doi.org/10.5957/CSYS-2022-002.
  • 16. Ocana-Blanco D, Castaneda-Sabadell I, Souto-Iglesias A. CFD and potential flow assessment of the hydrodynamics of a kitefoil. Ocean Engineering 2017;146:388–400. https://doi.org/10.1016/J.OCEANENG.2017.09.040.
  • 17. Gospodnetic S, Pedišić-Buča M, Goleš S, Tasić J. The effect of in-tolerance leading-edge defects on cavitation of a propeller section in the rectilinear flow. SNAME Propeller and Shafting Symposium, PSS 2023 2023. https://doi.org/10.5957/PSS-2023-006.
  • 18. Jin S, Zha R, Peng H, Qiu W, Gospodnetic S. Effects of leadingedge manufacturing defects on cavitation performance of foils. Marine Systems & Ocean Technology 2025. https://doi.org/10.1007/S40868-024-00156-7.
  • 19. Zarruk GA, Brandner PA, Pearce BW, Phillips AW. Experimental study of the steady fluid–structure interaction of flexible hydrofoils. J Fluids Struct 2014;51:326–43. https://doi.org/10.1016/J.JFLUIDSTRUCTS.2014.09.009.
  • 20. Hörberg E, Akermo M, Hallström S. Moisture effect on shape distortions of curved quasi-isotropic prepreg composite laminates. Compos Part A Appl Sci Manuf 2021;145:106361. https://doi.org/10.1016/J.COMPOSITESA.2021.106361.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf78fba8-11d5-4f20-bbc8-093d764b7c91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.