PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Random composite: stirred or shaken?

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A James Bond’s (JB) catchphrase “shaken, not stirred" is explored for the problem of effective conductivity of composites. The superconductivity critical index s for the conductivity of random non-overlapping disks turns out to be distinctly different for shaking and stirring protocols. In the case of stirring modeled by random walks the formula s(τ) = 0.5 + 0.8 3√τ is deduced for evolution of the critical index with the normalized time 0 ≤ τ ≤ 1, which is proportional to the number of random walks and serving as the disorder measure. Strikingly, the coefficient 0.8 is very close to the critical index for shaking protocol and 0.5 is the critical index for regular lattices. The obtained formula for s is based on the analytical solution to the 2D conductivity problem of randomly distributed disks up to O(x19), where x denotes the concentration of inclusions and its extension to special 3D composites.
Rocznik
Strony
229--241
Opis fizyczny
Bibliogr. 50 poz., rys.
Twórcy
autor
  • Ekayna Vihara Bathurst 3000, Apt 606 Toronto ON, M6B 3B4, Canada
autor
  • Department of Computer Sciences and Computer Methods Pedagogical University Podchorążych 2 30-084 Kraków, Poland
  • Department of Computer Sciences and Computer Methods Pedagogical University Podchorążych 2 30-084 Kraków, Poland
autor
  • Department of Computer Sciences and Computer Methods Pedagogical University Podchorążych 2 30-084 Kraków, Poland
Bibliografia
  • 1. D.S. McLachlan, G. Sauti, The AC and DC Conductivity of Nanocomposites, Journal of Nanomaterials, 2007, 30389, 9 pages, 2007.
  • 2. J.Wu, D.S. McLachlan, Scaling behaviour of the complex conductivity of graphite-boron nitride systems, Phys. Rev. B 58, 14880–14887, 1998.
  • 3. D.S. McLachlan, G. Sauti, C. Chiteme, Static dielectric function and scaling of the ac conductivity for universal and nonuniversal percolation systems, Phys. Rev. B, 76, 014201, 1–13, 2007.
  • 4. G. Ambrosetti, C. Grimaldi, I. Balberg, T. Maeder, A. Danani, P. Ryser, Solution of the tunneling-percolation problem in the nanocomposite regime, Phys. Rev B, 81, 155434, 1–12, 2010.
  • 5. G. Ambrosetti, I. Balberg, C. Grimaldi, Percolation-to-hopping crossover in conductor-insulator composites, Phys. Rev. B, 82, 134201, 2010.
  • 6. M. Danziger, A. Bashan, S. Havlin, Interdependent resistor networks with processbased dependency, New J. Phys., 17, 043046, 1–8, 2015.
  • 7. J. O’Neill, Ö. Selsil, R.C. McPhedran, A.B. Movchan, N.V. Movchan, Active cloaking of inclusions for flexural waves in thin elastic plates, Q. J.Mechanics Appl. Math., 68, 3, 263–288, 2015.
  • 8. V. Mityushev, N. Rylko, Maxwell’s approach to effective conductivity and its limitations, Q. J. Mechanics Appl. Math., 66, 241–251, 2013.
  • 9. R. Czapla, W. Nawalaniec, V. Mityushev, Effective conductivity of random twodimensional composites with circular non-overlapping inclusions, Comput. Mat. Sci., 63, 118–126, 2012.
  • 10. V. Mityushev, Steady heat conduction of a material with an array of cylindrical holes in the nonlinear case, IMA J. Appl. Math., 61, 91–102, 1998.
  • 11. V. Mityushev, Exact solution of the R-linear problem for a disk in a class of doubly periodic functions, JAFA 2, 115–127, 2007.
  • 12. J.B. Keller, Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders, J. Appl. Phys. 34, 991–993, 1963.
  • 13. W.T. Perrins, D.R. McKenzie, R.C. McPhedran, Transport properties of regular array of cylinders, Proc. R. Soc. A, 369, 207–225, 1979.
  • 14. R.C. McPhedran, Transport properties of cylinder pairs and of the square array of cylinders, Proc. R. Soc. Lond. A, 408, 31–43, 1986.
  • 15. R.C. McPhedran, L. Poladian, G.W. Milton, Asymptotic studies of closely spaced, highly conducting cylinders. Proc. R. Soc. A, 415, 185–196, 1988.
  • 16. D.J. Bergman, The dielectric constant of a composite material-a problem in classical physics, Phys. Rep., 43, 377–407, 1978.
  • 17. G.W. Milton, The Theory of Composites, Cambridge Univ. Press, 2002.
  • 18. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer-Verlag, New York, 2002.
  • 19. A.V. Goncharenko, Generalizations of the Bruggeman equation and a concept of shape distributed particle composites, Phys. Rev. E, 68, 041108, 1–13, 2003.
  • 20. M. Sahimi, B.D. Hughes, L. E. Scriven, H.T. Davis, Real-space renormalization and effective-medium approximation to the percolation conduction problem, Phys. Rev. B, 28, 307–311, 1983.
  • 21. S. Gluzman, A. Kornyshev, A. Neimark, Electrophysical Properties of metal-solid electrolyte composite, Phys. Rev. B, 52, 927–938, 1995.
  • 22. J.W. Eischen, S. Torquato, Determining elastic behavior of composites by the boundary element method, J. Appl. Phys., 74, 159–170, 1993.
  • 23. S. Torquato, T. M. Truskett, P.G. Debenedetti, Is random close packing of spheres well defined? Phys. Rev. Lett., 84, 2064–2067, 2000.
  • 24. S. Torquato, F.H. Stillinger, Jammed hard-particle packings: From Kepler to Bernal and beyond, Reviews of Modern Physica, 82, 2634–2672, 2010.
  • 25. N. Rylko, Representative volume element in 2D for disks and in 3D for balls, Journal of Mechanics of Materials and Structures, 9, 427–439, 2014.
  • 26. S. Gluzman, V. Mityushev, W. Nawalaniec, G. Starushenko, Effective Conductivity and Critical Properties of a Hexagonal Array of Superconducting Cylinders, Contributions in Mathematics and Engineering. In Honor of Constantin Caratheodory, P.M. Pardalos and T.M. Rassias [Eds.], Springer, 2016; arxiv.org/abs/1508.05068.
  • 27. S. Gluzman, V. Mityushev, Series, index and threshold for random 2D composite, Arch. Mech., 67, 75–93, 2015.
  • 28. S. Gluzman, V. Mityushev, W. Nawalaniec, Cross-properties of the effective conductivity of the regular array of ideal conductors, Arch. Mech., 66, 287–301, 2014.
  • 29. D.C. Hong, S. Havlin, H.J. Herrmann, H.E. Stanley, Breakdown of Alexander–Orbach conjecture for percolation: Exact enumeration of random walks on percolation backbones, Phys. Rev. B, 30, 4083–4086, 1984.
  • 30. J.-M. Normand, H.J. Herrmann, M. Hajjar, Precise calculation of the dynamical exponent of two-dimensional percolation, J. Stat. Phys., 52, 441–446, 1988.
  • 31. D.J. Frank, C.J. Lobb, Highly efficient algorithm for percolative transport studies in two dimensions, Phys. Rev. B, 37, 302–307, 1988.
  • 32. P. Grassberger, Conductivity exponent and backbone dimension in 2d percolation, Physica A, 262, 251–263, 1999.
  • 33. J.B. Keller, A theorem on the conductivity of a composite medium, J. Math. Phys., 5, 548–549, 1964.
  • 34. L.N. Smith, C.J. Lobb, Percolation in two-dimensional conductor-insulator networks with controllable anisotropy, Phys. Rev. B, 20, 3653–3658, 1979.
  • 35. L. Benguigui, Experimental study of the elastic properties of a percolating system, Phys. Rev. Lett. 53, 2028–2030, 1984.
  • 36. Y. Chen, S. Schuh, Effective properties of random composites: Continuum calculations versus mapping to a network, Phys. Rev. E, 80, 040103, 1–4, 2009.
  • 37. N. Lebovka, M. Lisunova, Ye.P. Mamunya, N. Vygornitskii, Scaling in percolation behaviour in conductive-insulating composites with particles of different size, J. Phys. D., 39, 2264–2272, 2006.
  • 38. T.C. Lubensky, A.-M.S. Tremblay, ǫ-expansion for transport exponents of continuum percolating systems, Phys. Rev. B, 34, 3408–3417, 1986.
  • 39. S. Feng, B. Halperin, P.N. Sen, Transport properties of continuum systems near the percolation threshold, Phys. Rev. B, 35, 197–214, 1987.
  • 40. K.M. Golden, Critical behavior of transport in lattice and continuum percolation models, Phys. Rev. Lett., 78, 3935–3938, 1997.
  • 41. D.R. Baker, G. Paul, S. Sreenivasan, H.E. Stanley, Continuum percolation threshold for interpenetrating squares and cubes, Phys.Rev. E, 66, 046136, 1–5, 2002.
  • 42. M. Murat, S. Marianer, D.J. Bergman, A transfer matrix study of conductivity and permeability exponents in continuum percolation, J. Phys. A, 19, L275–L279, 1998.
  • 43. I. Balberg, Limits on the continuum-percolation transport exponents, Phys. Rev. B, 57, 13351–13354, 1998.
  • 44. G.A. Baker, P. Graves-Moris, Padé Approximants, Cambridge University, Cambridge, 1996.
  • 45. V. Mityushev, W. Nawalaniec, Basic sums and their random dynamic changes in description of microstructure of 2D composites, Comput. Mater. Sci., 97, 64–74, 2015.
  • 46. S. Gluzman, V.I. Yukalov, Extrapolation of perturbation-theory expansions by selfsimilar approximants, European Journal of Applied Mathematics, 25, 595–628, 2014.
  • 47. S. Gluzman, V.I. Yukalov, Self-similar extrapolation from weak to strong coupling, J. Math. Chem., 48, 883–913, 2010.
  • 48. V. Yukalov, S. Gluzman, Self similar crossover in statistical physics, Physica A, 273, 401–415, 1999.
  • 49. L. Berlyand, V. Mityushev, Generalized Clauisius-Mossotti Formula for Random Composite with Circular Fibers, J. Stat. Phys., 102, 115–145, 2001.
  • 50. J.J. Telega, Stochastic homogenization: convexity and nonconvexity, [in:] P.P. Castañeda, J.J. Telega, B. Gambin [Eds.], Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials, NATO Science Series, Kluwer Academic Publishers, Dordrecht, 305–346, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf74ae65-e8c5-43b6-84c2-fe4be888c3b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.